, Volume 105, Issue 4, pp 293–309

Embryogenesis and germination in rye (Secale cereale L.)

II. Biochemical and fine structural changes during germination
  • Neil D. Hallam
  • Bryan E. Roberts
  • Daphne J. Osborne


When rye embryos imbibe water they rapidly return to a condition of biochemical and structural complexity. Three stages of imbibition can be recognised: Phase I a short period (10 min) of physical wetting; Phase II a longer period (1 h) when little further imbibition occurs, followed by Phase III a continuous phase of active water uptake. The latter coincides with an increase in respiration rate and an increase both in the number of mitochondria and of cristae within them. Changes in fine structure become evident in all organelles in Phase III, after 2 h of imbibition. In the unimbibed embryo endoplasmic reticulum is present only as short crescents associated with electron lucent bodies, but in Phase III the endoplasmic reticulum proliferates to form many surrounding cirlets. After 6 h these circlets become fewer and instead the endoplasmic reticulum is seen in close association with the nuclear membrane. Concurrently incorporation of radioactive uridine and thymidine is first detectible. This suggests that the large increase in protein synthesis occurs on new ribosomes present on the reticulum associated with the nuclear membrane. For the first 6 h protein synthesis must occur either on polysomes within the dense packing of ribosomes or on these circlets of endoplasmic reticulum associated with electron lucent bodies.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdul-Baki, A., Baker, J. E.: Changes in respiration and cyanide sensitivity of the barley floret during development and maturation. Plant Physiol. 45, 929–938 (1970).Google Scholar
  2. Bain, J. M., Mercer, F. V.: Subcellular organization of the cotyledons in germinating seeds and seedlings of Pisum sativum L. Aust. J. biol. Sci. 19, 69–84 (1966).Google Scholar
  3. Bain, J. M., Mercer, F. V.: The relationship of the axis and the cotyledons in germinating seeds and seedlings of Pisum sativum L. Aust. J. biol. Sci. 19 85–96 (1966).Google Scholar
  4. Berjak, P.: A lysosome-like organelle in the root cap of Zea mays. J. Ultrastruct. Res. 23, 233–243 (1968).Google Scholar
  5. Berjak, P., Villiers, T. A.: Ageing in plant embryos. I. The establishment of the sequence of development and senescence in the root cap during germination. New Phytologist 69, 929–938 (1970).Google Scholar
  6. Chen, D., Osborne, D. J.: Hormones in the translational control of early germination in wheat embryos. Nature (Lond.) 226, 1157–1160 (1970).Google Scholar
  7. Chen, D., Sarid, S., Katchalski, E.: Studies on the nature of messenger RNA in germinating wheat embryos. Proc. nat. Acad. Sci. (Wash.) 60, 902–909 (1968).Google Scholar
  8. Chen, D., Schultz, G., Katchalski, E.: Early ribosomal RNA transcription and appearance of cytoplasmic ribosomes during germination of the wheat embryo. Nature (New Biol.) 231, 69–72 (1971).Google Scholar
  9. Deltour, R.: Synthese et translocation de RNA dans les cellules radiculaires de Zea mays au debut de la germination. Planta (Berl.) 92, 235–239 (1970).Google Scholar
  10. Deltour, R., Bronchart, R.: Changements de l'ultrastructure des cellules radiculaires de Zea mays au debut de la germination. Planta (Berl.) 97, 197–207 (1971).Google Scholar
  11. Durzan, D. J., Mia, A. J., Ramaiah, P. K.: The metabolism and subcellular organization of the jack pine embryo (Pinus banksiana) during germination. Canad. J. Bot. 49, 927–938 (1971).Google Scholar
  12. Hallam, N. D.: Embryogenesis and germination in Rye (Secale cereale L.). (i) Fine structure of late embryogenesis and the mature embryo. Planta (Berl.) 1972 (in press).Google Scholar
  13. Horner, H. T., Jr., Arnott, H. J.: A histochemical and ultrastructural study of pre and post germinated Yucca seeds. Bot. Gaz. 127, 48–64 (1966).Google Scholar
  14. Marcus, A., Feeley, J.: Activation of protein synthesis in the imbibition phase of seed germination. Proc. nat. Acad. Sci. (Wash.) 51, 1075–1079 (1964).Google Scholar
  15. Marcus, A., Feeley, J.: Protein synthesis in imbibed seeds. II. Polysome formation during imbibition. J. biol. Chem. 240, 1675–1680 (1965).Google Scholar
  16. Marcus, A., Feeley, J., Volcani, T.: Protein synthesis in imbibed seeds. III. Kinetics of amino acid incorporation, ribosome activation and polysome formation. Plant Physiol. 41, 1167–1172 (1966).Google Scholar
  17. McCarthy, W. J., App, A. A., Crotty, W. J.: The effect of calcium on in vitro polyphenylalanine synthesis by rice ribosomes. Biochim. biophys. Acta (Amst.) 246, 132–140 (1971).Google Scholar
  18. Nieudorp, P. J., Buys, M. C.: Electron microscope structure of the epithelial cells of the scutellum of Barley. II. Cytology of the cells during germination. Acta bot. neerl. 13, 559–565 (1964).Google Scholar
  19. Rappaport, L., Wolf, N.: Regulation of bud rest in tubers of potato Solanum tuberosum L. IV. Gibberellins and nucleic acid synthesis in excised buds. Proceedings of the International Symposium on Plant Biochemical Regulation in diseased plants or injury. Path. Soc. Japan, Tokyo, pp. 209–211 (1968).Google Scholar
  20. Shih, C. Y., Rappaport, L.: Regulation of bud rest in tubers of potato Solanum tuberosum L. VIII. Early effects of gibberellin A3 and abscisic acid on ultrastructure. Plant Physiol. 48, 31–35 (1971).Google Scholar
  21. Weeks, D. P., Marcus, A.: Preformed messenger of quiescent embryos. Biochim. biophys. Acta (Amst.) 232, 671–684 (1971).Google Scholar
  22. Yoo, B. Y.: Ultrastructural changes in cells of pea embryo radicles during germination. J. Cell Biol. 45, 158–171 (1970).CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • Neil D. Hallam
    • 1
  • Bryan E. Roberts
    • 1
  • Daphne J. Osborne
    • 1
  1. 1.Agricultural Research Council Unit of Developmental BotanyCambridgeUK
  2. 2.Botany DepartmentMonash UniversityClaytonAustralia

Personalised recommendations