Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Eine integrierte Theorie zur Abundanzdynamik tierischer Populationen

An integrated theory of natural control of animal populations

  • 48 Accesses

  • 9 Citations


Since the twenties of our century, at least 15 theories worth discussing have been developped which intend to explain the causes of natural control of animal populations (for details see Schwerdtfeger, 1968). An attempt is made to integrate the different—partly contrary—ideas and new results into a general theory. The basis to start from is the cybernetic principle of feed-back mechanism introduced into population dynamics by Wilbert (1962): an actual value (e.g. the inside temperature of a refrigerator) is permanently changed by perturbances (the always higher outside temperature); through a regulator (a thermostat), each change puts in action a regulating variable (a cooling device) which alters the actual towards the index value (required inside temperature).

The often complicated processes that take part in the natural control of populations are summarized in Fig. 6. The actual value is the existing population density (Abundanz). The perturbances primarily causing its fluctuations (Fluktuation) are fertility and immigration which raise the abundance, mortality and emigration which lower it.

The amplitude of the fluctuation must be limited, if the population is not to die out or to destroy its habitat by continuous increase. It is determined (Determination) as a sort of index value, the lower limit of which corresponds in the extreme to the minimal density guaranteeing the existence of the population, while the upper limit is formed by the environmental capacity. The latter is determined either by the total supply of requisites and the ability of the animals to use it or by the local minimum of adverse effects. The capacity of the environment and therewith the amplitude of fluctuations can be fixed or variable. It is fixed in a population of Great Tits with territorial behaviour: in an oak stand, the number of breeding pairs cannot be higher than the number of territories fitting in. It is variable in the case of bark beetles living in wind thrown spruce trees: they may find 2 suitable trees this year, 100 the next after heavy winter storms and 10 the year after next. In this case, the change of determination was a change of environment, specifically of the supply of a requisite; it can as well be a change in the constitution of the population characterized by its demands and efficiencies: in the final effect it makes no difference wether more breeding space is offered or less is demanded. The variability of the amplitude in the case of the bark beetles is caused by chance; it can also be governed or self-induced. It is governed e.g. by the seasonal rhythm of climate: the average level of density in tsetse flies is higher during the rain season than during the dry season. It is self-induced in the case of an entomophagous parasite changing the density of its host insect and by this varying the supply of a requisite.

Fertility permanently tends to raise the density of populations. Processes of limitation (Limitation) work against this tendency. With increasing abundance, density dependent factors become more effective as general regulators. In simple feed-back control systems (einfacher Regelkreis), regulation is solely performed by perfectly density dependent factors. An example is the cyclically fluctuating Field Vole: increasing mutual interference causes a crash of the abundance which thereafter rises again. In complex feed-back control systems (komplexer Regelkreis) density is kept on a low level for a shorter or longer period by random influences and delayed density dependent factors; now and then a real regulating factor has to interfere as an emergency brake to prevent the transgression of the upper density limit. That applies to many insect populations. The effect of the limiting factors as regulating variables consists in lowering fertility and immigration and raising mortality and emigration.

The processes causing fluctuations result in an equilibrium density (Gleichgewichtsdichte): increase and decrease are counterbalanced. The level of the equilibrium density is differently situated within the amplitude and approximately in accordance with the long-term average of the actual densities.


Seit den zwanziger Jahren unseres Jahrhunderts sind mindestens 15 diskutable Theorien entwickelt worden, welche die Abundanzdynamik tierischer Populationen ursächlich erklären wollen. Es wird der Versuch unternommen, die in ihnen niedergelegten und als richtig beurteilten Anschauungen unter Einfügung neuer Erkenntnisse zu einer umfassenden Theorie zu integrieren. Ausgangsbasis ist dabei der von Wilbert (1962) in die Populationsdynamik eingeführte kybernetische Mechanismus der Rückkoppelung. Das Ergebnis des Versuchs ist im Schema der Abb. 6 sowie in dem im letzten Absatz formulierten Prinzip der Abundanzdynamik zusammengefaßt.

This is a preview of subscription content, log in to check access.


  1. Andrewartha, H. G., and L. C. Birch: The distribution and abundance of animals. Chicago 1954.

  2. —: Some recent contributions to the study of the distribution and abundance of insects. Ann. Rev. Ent. 5, 219–242 (1960).

  3. Beaver, R. A.: The regulation of population density in the bark beetle Scolytus scolytus (F.). J. Anim. Ecol. 36, 435–451 (1967).

  4. Bobb, M. L.: Apparent loss of sex attractiveness by the female of the Virginia-pine Sawfly, Neodiprion pratti pratti. J. econ. Ent. 57, 829–830 (1964).

  5. Bursell, E.: Experiments in Tsetse control in southern Tanganyika. Bull. ent. Res. 46, 589–595 (1956).

  6. Byrd, M. A.: Relation of ecological succession to farm game in Cumberland County in the Virginia Piedmont. J. Wildlife Man. 20, 188–195 (1956).

  7. Chitty, D.: Population processes in the vole and their relevance to general theory. Canad. J. Zool. 38, 99–113 (1960).

  8. Crombie, A. C.: The effect of crowding upon the natality of grain-infesting insects. Proc. zool. Soc. Lond. A 113, 77–98 (1943).

  9. Dixon, A. F. G.: Reproductive activity of the Sycamore aphid, Drepanosiphum platanoides (Schr.) (Hemiptera, Aphididae). J. Anim. Ecol. 32, 33–48 (1963).

  10. Eidmann, H. H.: Okologische und physiologische Studien über die Lärchenminiermotte, Coleophora laricella Hbn. Stud. for. suec. 32 (1965).

  11. Errington, P. L.: Reactions of muskrat populations to drought. Ecology 20, 168–186 (1939).

  12. Flechtner, H. J.: Grundbegriffe der Kybernetik. Stuttgart: Wissenschaftliche Verlagsgesellschaft 1966.

  13. Frank, F.: Die Kausalität der Nagetier-Zyklen im Lichte neuer populationsdynamischer Untersuchungen an deutschen Microtinen. Z. Morph. Ökol. Tiere 43, 321–356 (1954).

  14. Franz, J. M.: Qualität und intraspezifische Konkurrenz im Regulationsprozeß von Insektenpopulationen. Z. angew. Ent. 55, 319–325 (1964/65).

  15. Geier, P. W.: Spatial favourableness and patterns of numerical causation. Proc. 12. Int. Congr. Ent. 1965, p. 368–369.

  16. Glen, R.: Factors that affect insect abundance. J. econ.EEnt. 47, 398–405 (1954).

  17. Gradmann, H.: Die Rückkoppelung als Urprinzip der Lebensvorgänge. München: Verlag der Bayerischen Akademie der Wissenschaften 1963.

  18. Hassenstein, B.: Biologische Kybernetik. Heidelberg: Quelle & Meyer 1965.

  19. Johnson, W. E.: On mechanisms of self-regulation of population abundance in Oncorhynchus nerka. Mitt. int. Ver. Limnol. 13, 66–87 (1965).

  20. Kangas, E.: On population regulation of forest insects living in tree rind, in Finland. Trans. 9. Int. Congr. Ent. 2, 224–228 (1953).

  21. Klomp, H.: The influence of climate and weather on the mean density level, the fluctuations and the regulation of animal populations. Arch. Néerl. Zool. 15, 68–109 (1962).

  22. —: The dynamics of a field population of the Pine Looper, Bupalus piniarius L. (Lep., Geom.). Advanc. ecol. Res. 3, 207–305 (1966).

  23. Klomp, H., and P. Gruys: The analysis of factors affecting reproduction and mortality in a natural population of the Pine Looper, Bupalus piniarius L. Proc. 12. Int. Congr. Ent. 1965, p. 369–372.

  24. Kluyver, H. N., and L. Tinbergen: Territory and the regulation of density in Titmice. Arch. Néerl. Zool. 10, 265–286 (1953).

  25. Lack, D.: Population ecology in birds. Proc. 10. Int. Ornith. Congr. 1951, p. 409–448.

  26. LeCren, E. D.: Some factors regulating the size of populations of freshwater fish. Mitt. int. Ver. Limnol. 13, 88–105 (1965).

  27. Lotz, G., u. J. Moeller: Zur Dispersion der Lepidopterenlarven in einem Eichenbestand. Z. angew. Ent. 60, 211–218 (1967).

  28. Martinek, V.: Die Möglichkeit der Bestimmung des Types des Regulationsmechanismus bei den Forstschädlingen durch die Analyse der Gradationskurve auf dem Beispiel der Gemeinen Fichtengespinstblattwespe (Cephalcia abietis L.). Ochr. Rostl. 3 (XL), 141–150 (1967).

  29. McLeod, J. A.: Preliminary studies on muskrat biology in Manitoba. Trans. roy. Soc. Can., Sect. V, 42, 81–95 (1948).

  30. Merker, E.: Der Massenwechsel des großen Fichtenborkenkäfers (Ips typographus L.) und seine Abhängigkeit vom Standort. Beitr. Ent. 5, 245–275 (1955).

  31. Milne, A.: Theories of natural control of insect populations. Cold Spr. Harb. Symp. quant. Biol. 22, 253–271 (1957).

  32. —: On a theory of natural control of insect population. J. theor. Biol. 3, 19–50 (1962).

  33. Nicholson, A. J.: The balance of animal populations. J. Anim. Ecol. 2, 132–178 (1933).

  34. —: An outline of the dynamics of animal populations. Aust. J. Zool. 2, 9–65 (1954).

  35. —: Dynamics of insect populations. Ann. Rev. Ent. 3, 107–136 (1958).

  36. Nielsen, C. O.: Studies on Enchytraeidae. 5. Factors causing seasonal fluctuations in numbers. Oikos 6, 153–169 (1955).

  37. Nuorteva, M.: Über den Einfluß der Menge des Brutmaterials auf die Vermehrlichkeit und die natürlichen Feinde des Großen Waldgärtners, Blastophagus piniperda L. (Col., Scolytidae). Ann. ent. fenn. 30, 1–17 (1964).

  38. Ohnesorge, B.: Untersuchungen über die Populationsdynamik der Kleinen Fichtenblattwespe, Pristiphora abietina (Christ) (Hym. Tenthr.). Z. angew. Ent. 49, 113–162 (1961/62).

  39. —: Beziehungen zwischen Regulationsmechanismus und Massenwechselablauf bei Insekten. Z. angew. Zool. 50, 427–483 (1963).

  40. Page, W. A.: The ecology of Glossina longipalpis Wied. in Southern Nigeria. Bull. ent. Res. 50, 595–615 (1960).

  41. Pejler, B.: The zooplankton of Ösbysjön, Djursholm. I. Seasonal and vertical distribution of the species. Oikos 12, 225–248 (1961).

  42. Pimentel, D.: On a genetic feed-back mechanism regulating populations of herbivores parasites and predators. Amer. Naturalist 95, 65–79 (1961).

  43. Remane, A.: Ordnungsformen der lebenden Natur. Studium gen. 3, 404–410 (1950).

  44. Reynoldson, T. B.: Population fluctuations in Urceolaria mitra (Peritricha) and Enchytraeus albidus (Oligochaeta) and their bearing on regulation. Cold Spr. Harb. Symp. quant. Biol. 22, 313–327 (1957).

  45. —, and J. O. Young: Food supply as a factor regulating population size in freshwater triclads. Mitt. Int. Ver. Limnol. 13, 3–20 (1965).

  46. Schwerdtfeger, F.: Über die Ursachen des Massenwechsels der Insekten. Z. angew. Ent. 28, 254–303 (1941).

  47. Schwerdtfeger, F. Pathogenese der Borkenkäfer-Epidemie 1946–1950 in Nordwestdeutschland. Frankfurt a.M. 1955.

  48. Schwerdtfeger, F Die Waldkrankheiten, 2. Aufl. Hamburg u. Brrlin 1957.

  49. —: Is the density of animal populations regulated by mechanisms or by chance? Proc. 10. Int. Congr. Ent. 4, 115–122 (1958).

  50. Schwerdtfeger, F.: Ökologie der Tiere. I. Autökologie. Hamburg u. Berlin 1963. II. Demökologie. Hamburg u. Berlin 1968.

  51. Skuhravý, V., u. K. Novák: Die quantitativen Beziehungen zwischen der Schwarzen Bohnenblattlaus (Aphis fabae Scop.) und ihren Räubern an der Zuckerrübe. Z. angew. Ent. 57, 141–166 (1966).

  52. Solomon, M. E.: The natural control of animal populations. J. Anim. Ecol. 18, 1–35 (1949).

  53. —: Dynamics of insect populations. Ann. Rev. Ent. 2, 121–142 (1957).

  54. Thompson, W. R.: On natural control. Parasitology 21, 269–281 (1929).

  55. —: The fundamental theory of natural and biological control. Ann. Rev. Ent. 1, 379–402 (1956).

  56. Utida, S.: Studies on experimental population of the Azuki bean weevil, Callosobruchus chinensis (L.). IV. Analysis of density effect with respect to fecundity and fertility of eggs. Mem. Coll. Agr. Kyoto 51, 1–26 (1941).

  57. Voûte, A. D.: Regulierung der Bevölkerungsdichte von schädlichen Insekten auf geringer Höhe durch die Nährpflanze (Myelophilus piniperda L., Retinia buoliana Schff. Diprion sertifer Geoffr.). Z. angew. Ent. 41, 172–178 (1957).

  58. Wagner, E.: Beiträge zur Erforschung für die forstliche Praxis wichtiger Zusammenhänge der Borkenkäferkatastrophe 1945–1949 im Bad. Forstbezirk St. Blasien. In: Die große Borkenkäferkalamität in Südwestdeutschland 1944–1951, hrsg, von G. Wellenstein, Ringingen, S. 191–224. 1954.

  59. Wagner, R.: Das Regelproblem in der Biologie. Stuttgart: Georg Thieme 1954.

  60. Weismann, L.: Die Populationsdynamik der Schwarzen Rübenblattlaus Aphis fabae Scop. an der Zuckerrübe als Grundlage der Schadensprognose. Z. angew. Ent. 59, 1–15 (1967).

  61. Whittaker, J. B.: The distribution and population dynamics of Neophilaenus lineatus (L.) and N. exclamationis (Thun.) (Homoptera, Cercopidae) on Pennine Moorland. J. Anim. Ecol. 34, 277–297 (1965).

  62. Wilbert, H.: Über Festlegung und Einhaltung der mittleren Dichte von Insektenpopulationen. Z. Morph. Ökol. Tiere 50, 576–615 (1962).

  63. Wilbert, H.: Cybernetic conceptions in population dynamics. Im Druck (1968).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schwerdtfeger, F. Eine integrierte Theorie zur Abundanzdynamik tierischer Populationen. Oecologia 1, 265–295 (1968). https://doi.org/10.1007/BF00386685

Download citation