Marine Biology

, Volume 61, Issue 2–3, pp 199–205 | Cite as

Effects of starvation, and light and dark on the energy metabolism of symbiotic and aposymbiotic sea anemones, Anthopleura elegantissima

  • W. K. Fitt
  • R. L. Pardy


Rates of oxygen and carbon-dioxide exhange were measured in symbiotic and aposymbiotic specimens of the sea anemone Anthopleura elegantissima while fed and starved under light or dark conditions. Respiratory quotients indicated that fed anemones switched from a carbohydrate to a fat catabolism when starved, with the exception that symbiotic individuals starved in the light showed a pronounced carbohydrate catabolism for over 1 month. The source of the carbohydrate was probably photosynthate translocated by the dinoflagellate Symbiodinium (=Gymnodinium) microadriaticum (Freudenthal) living in the anemones' tissues. The starved symbiotic anemones maintained in the light had lipid levels not significantly different from fed controls and 44 to 61% higher than starved aposymbiotic anemones after 1 month. Thus, the quality and quantity of the metabolic flux from the symbionts to the sea anemone were sufficient to conserve the host's lipid reserves.


Lipid Carbohydrate Energy Metabolism Lipid Level Dinoflagellate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Beyers, R. J.: A pH-carbon dioxide method for measuring aquatic primary productivity. Bull. Ga Acad Sci. 28, 55–68 (1970)Google Scholar
  2. Blanquet, R. S., J. C. Nevenzel and A. A. Benson: Acetate incorporation into the lipids of the anemone Anthopleura elegantissima and its associated zooxanthellae. Mar. Biol. 54, 185–194 (1979)Google Scholar
  3. Buchner, P.: Endosymbiosis of animals with plant microorganisms, 909 pp. New York: Wiley Interscience 1965Google Scholar
  4. Childress, J. J. and M. N. Nygaard: Chemical composition and buoyancy of midwater crustaceans as a function of depth of occurrence off Southern California. Mar. Biol. 27, 225–238 (1974)Google Scholar
  5. Ciereszko, L. S. and T. K. B. Karns: Comparative biochemistry of coral reef coelenterates. In: Biology and geology of coral reefs, Vol. II. pp 183–203. Ed. by O. A. Jones and R. Endean. New York: Academic Press 1973Google Scholar
  6. Droop, M.: Algae and invertebrates in symbiosis. Symp. Soc. gen Microbiol. 13, 171–199 (1963)Google Scholar
  7. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers and F. Smith: Colorometric method for the determination of sugars and related substances. Analyt. Chem. 28, 350–356 (1956)Google Scholar
  8. Fankboner, R. V.: Intracellular digestion of symbiotic zooxanthellae by host amoebocytes in giant clams (Bivalvia: Tridacnidae), with a note on the nutritional role of the hypertrophied siphonal epidermis. Biol. Bull. mar. biol. Lab., Woods Hole, 141, 222–234 (1971)Google Scholar
  9. Folch, J., M. Lees and G. H. Sloane Stanley: A simple method for the isolation and purification of total lipids from animal tissues. J. biol. Chem. 226, 497–509 (1956)Google Scholar
  10. Franzisket, L.: Riffcorallen können autroph leben. Naturwissenschaften 56, p. 144 (1969)Google Scholar
  11. Giese, A. C.: Lipids in the economy of marine invertebrates. Physiol. Rev. 46, 244–298 (1966)Google Scholar
  12. Goreau, T. F. and N. I. Goreau: Distribution of labeled carbon in reef-building corals with and without zooxanthellae. Science, N. Y. 131, 668–670 (1960)Google Scholar
  13. Holt, C. von, and M. von Holt: The secretion of organic compounds by zooxanthellae isolated from various types of Zoanthus. Comp. Biochem. Physiol. 24, 83–92 (1968a)Google Scholar
  14. Holt, C. von, M. von Holt: Transfer of photosynthetic products from zooxanthellae to coelenterate hosts. Comp. Biochem. Physiol. 24, 73–81 (1968b)Google Scholar
  15. James, W. O. Plant respiration, 282 pp. Oxford: Clarendon Press 1953Google Scholar
  16. Jennison, B. L.: An analyses of the environmental factors which influence gametogenesis, spawning, and nutrient storage in the sea anemone Anthopleura elegantissima (Brandt, 1935), 194 pp. Ph.D. thesis, University of California at Berkeley 1977Google Scholar
  17. Kleiber, M.: The fire of life, 454 pp. New York: John Wiley & Sons 1961Google Scholar
  18. Kleiber, M.: Respiratory exchange and metabolic rate. In: Respiration, Vol. II. pp 927–938. Ed. by W. O. Fern and H. Rahn. Washington D.C.: American Physiological Society 1965Google Scholar
  19. Lewis, D. H. and D. C. Smith: The autotrophic nutrition of symbiotic marine coelenterates with special reference to hermatypic corals. I. Movement of photosynthetic products between the symbionts. Proc. R. Soc. (Ser. B) 178, 111–129 (1971)Google Scholar
  20. Lowry, O. H., H. J. Rosenborough, A. L. Farr and R. J. Randall: Protein measurement with folin phenol reagent. J. biol. Chem. 193, 265–275 (1951)PubMedGoogle Scholar
  21. McCloskey, L. R., D. S. Wethey and J. W. Porter: Measurement and interpretation of photosynthesis and respiration in reef corals. Monogr. oceanogr. Methodol. (UNESCO) 5, 379–396 (1978)Google Scholar
  22. McLaughlin, J. A. and P. A. Zahl: Endozoic algae. In: Symbiosis, Vol. 1. pp 257–297. Ed. by S. M. Henry. New York: Academic Press 1966Google Scholar
  23. Muscatine, L.: Symbiosis in marine and freshwater coelenterates. In: The biology of hydra, pp 255–268. Ed. by H. Lenhoff and W. F. Loomis. Miami: University of Miami Press 1961Google Scholar
  24. Muscatine, L.: Glycerol excretion by symbiotic algae from corals and Tridacna and its control by the host. Science, N.Y. 156, 519–520 (1967)Google Scholar
  25. Muscatine, L.: Nutrition in corals. In: Biology and geology of coral reefs, Vol. II. pp 77–115. Ed. by O. A. Jones and R. Endean. New York: Academic Press 1973Google Scholar
  26. Muscatine, L. and E. Cernichiari: Assimilation of photosynthetic products of zooxanthellae by a reef coral. Biol. Bull. mar. biol. Lab., Woods Hole 137, 506–523 (1969)Google Scholar
  27. Muscatine, L. and C. Hand: Direct evidence for the transfer of materials from symbiotic algae to the tissues of coelenterates. Proc. natn. Acad. Sci U.S.A. 44, 1259–1263 (1958)Google Scholar
  28. Muscatine, L., R. R. Pool, and E. Cernichiari: Some factors influencing selective release of soluble organic material by zooxanthellae from reef corals. Mar. Biol. 13, 298–308 (1972)Google Scholar
  29. Muscatine, L. and J. W. Porter: Reef corals: mutualistic symbioses adapted to nutrient-poor environments. BioSci. 27, 454–460 (1977)Google Scholar
  30. Nicol, J. A. C.: Biology of marine animals, 699 pp. London: Pitman 1960Google Scholar
  31. Pardy, R. L.: The production of aposymbiotic hydra by the photodestruction of green hydra zoochlorellae. Biol. Bull. mar. biol. Lab., Wood Hole 151, 225–235 (1976)Google Scholar
  32. Pardy, R. L. and B. N. While: Metabolic relationships between green hydra and its symbiotic algae. Biol. Bull mar. biol. Lab., Wood Hole 153, 228–236 (1977)Google Scholar
  33. Richardson, H. B.: The respiratory quotient. Physiol. Rev. 9, 61–125 (1929)Google Scholar
  34. Roffman, B.: Patterns of oxygen exchange in some Pacific corals. Comp. Biochem. Physiol. 27, 405–418 (1968)Google Scholar
  35. Shick, J. M., W. I. Brown, E. G. Dolliver and S. R. Kayer: Oxygen uptake in sea anemones: effects of expansion, contraction, and exposure to air and the liminations of diffusion. Physiol. Zoöl. 52, 50–62 (1979)Google Scholar
  36. Smith, D. C., L. Muscatine and D. H. Lewis: Carbohydrate movement from autotrophs to heterotrops in parasitic and mutualistic symbiosis. Biol. Rev. 44, 19–90 (1969)Google Scholar
  37. Svoboda, A. and T. Porrmann: Oxygen preduction and uptake by symbiotic Aiptasia diaphana (Rapp), (Anthoroa, Coelenterata) adapted to different light intensities. In: Nutrition in lower metazoa, Vol. I. Ed. by Y. Tiffon. New York: Pergamon Press (In press)Google Scholar
  38. Taylor, D. L.: On the regulation and maintenance of algal numbers in zooxanthellae-coelenterate symbiosis, with a note on the relationship in Anemonia sulcata. J. mar. biol. Ass. U.K. 49, 1057–1065 (1969)Google Scholar
  39. Taylor, D. L.: Algal symbionts of invertebrates. A. Rev. Microbiol. 27, 171–187 (1973)Google Scholar
  40. Trench, R.K.: The physiology and biochemistry of zooxanthellae symbiotic with marine coelenterates. I. The assimilation of photosynthetic products of zooxanthellae by two marine coelenterates. Proc. R. Soc. (Ser. B) 177, 225–235 (1971a)Google Scholar
  41. Trench, R. K.: The physiology and biochemistry of zooxanthellae symbiotic with marine coelenterates. II. Liberation of fixed 14C by zooxanthellae in vitro. Proc. R. Soc. (Ser. B) 177, 237–250 (1971b)Google Scholar
  42. Trench, R. K.: The physiology and biochemistry of zooxanthellae symbiotic with marine coelenterates. III. The effect of homogenates of host tissues on the excretion of photosynthetic products in vitro by zooxanthellae from two marine coelenterates. Proc. R. Soc. (Ser. B) 177, 251–264 (1971c)Google Scholar
  43. Trench, R. K.: Nutritional potentials in Zoanthus sociatus (Coelenterata: Anthozoa). Helgoländer wiss. Meeresunters. 26, 174–216 (1974)Google Scholar
  44. Trench, R. K.: The cell biology of plant-animal sybiosis. A. Rev. Pl. Physiol. 30, 485–531 (1979)Google Scholar
  45. Wethey, D. S. and J. W. Porter: Sun and shade differences in productivity of reef corals. Nature, Lond. 262, 281–282 (1976)Google Scholar
  46. Young, S. D., J. D. O'Connor and L. Muscatine: Organic material from scleractinian coral skeletons. II. Incorporation of 14C into protein, chitin, and lipid. Comp. Biochem. Physiol. 40, 945–958 (1971)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • W. K. Fitt
    • 1
    • 2
  • R. L. Pardy
    • 3
  1. 1.Marine Science InstituteUniversity of California at Santa BarbaraSanta BarbaraUSA
  2. 2.Department of Biological SciencesUniversity of California at Santa BarbaraSanta BarbaraUSA
  3. 3.School of Life SciencesUniversity of NebraskaLincolnUSA

Personalised recommendations