Planta

, Volume 107, Issue 4, pp 279–300 | Cite as

Solution flow in tubular semipermeable membranes

  • Walter Eschrich
  • Ray F. Evert
  • John H. Young
Article

Summary

Solution flow in tubular semipermeable membranes was studied as a model for assimilate transport in sieve tubes. A mass flow of solution was demonstrated both in closed turgid tubes and in open tubes without turgor pressure. These results can be explained in terms of hydrostatic and osmotic pressure differences across the semipermeable membrane without consideration of a decrease in hydrostatic pressure along the direction of solution flow. A theoretical model based on nonequilibrium thermodynamics is developed that is in fairly good quantitative agreement with the experimental results. Münch's original experiment demonstrating solution flow is analyzed and shown not to depend on a gradient of hydrostatic pressure but rather to depend on the same driving forces operative in these experiments. On the basis of these findings a “volume-flow” mechanism of phloem transport is proposed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aikman, D. P., Anderson, W. P.: A quantitative investigation of a peristaltic model for phloem translocation. Ann. Bot. 35, 761–772 (1971).Google Scholar
  2. Canny, M. J.: The mechanism of translocation. Ann. Bot. 26, 603–617 (1962).Google Scholar
  3. Crafts, A. S., Crisp, C. E.: Phloem transport in plants. San Francisco: Freeman 1971.Google Scholar
  4. Curtis, O. F.: The translocation of solutes in plants. New York: McGraw-Hill 1935.Google Scholar
  5. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., Smith, F.: Colorimetric method for determination of sugars and related substances. Analyt. Chem. 28, 350–356 (1956).Google Scholar
  6. Eschrich, W.: Bidirektionelle Translokation in Siebröhren. Planta (Berl.) 73, 37–49 (1967).Google Scholar
  7. Fensom, D. S.: The bioelectric potentials of plants and their functional significance. I. An electrokinetic theory of transport. Canad. J. Bot. 35, 573–582 (1957).Google Scholar
  8. Fisher, D. B.: Kinetics of C14-translocation in soybean. III. Theoretical considerations. Plant Physiol. 45, 119–125 (1970).Google Scholar
  9. Hammel, H. T.: Measurement of turgor pressure and its gradient in the phloem of oak. Plant Physiol. 43, 1042–1048 (1968).Google Scholar
  10. Ho, L. C., Peel, A. J.: Investigation of bidirectional movement of tracers in sieve tubes of Salix viminalis L. Ann. Bot. 33, 833–844 (1969).Google Scholar
  11. Katchalsky, A., Curran, P. F.: Nonequilibrium thermodynamics in biophysics. Cambridge, Mass.: Harvard Univ. Press 1965.Google Scholar
  12. Kaufmann, M. R., Kramer, P. J.: Phloem water relations and translocation. Plant Physiol. 42, 191–194 (1967).Google Scholar
  13. Lee, D. R., Arnold, D. C., Fensom, D. S.: Some microscopical observations of sieve tubes of Heracleum using Nomarski optics. J. exp. Bot. 22, 25–38 (1971).Google Scholar
  14. MacRobbie, E. A. C.: Phloem translocation. Facts and mechanisms: a comparative survey. Biol. Rev. 46, 429–481 (1971).Google Scholar
  15. Münch, E.: Dynamik der Saftströmungen. Ber. dtsch. bot. Ges. 44, 68–71 (1927).Google Scholar
  16. Münch, E.: Die Stoffbewegungen in der Pflanze. Jena: Fischer 1930.Google Scholar
  17. Spanner, D. C.: The translocation of sugar in sieve tubes. J. exp. Bot. 9, 332–342 (1958).Google Scholar
  18. Spanner, D. C.: The electro-osmotic theory of phloem transport in the light of recent measurements on Heracleum phloem. J. exp. Bot. 21, 325–334 (1970).Google Scholar
  19. Spanner, D. C., Jones, R. L.: The sieve tube wall and its relation to translocation. Planta (Berl.) 92, 64–72 (1970).Google Scholar
  20. Thaine, R.: Transcellular strands and particle movement in mature sieve tubes. Nature (Lond.) 192, 772–773 (1961).Google Scholar
  21. Thaine, R.: A translocation hypothesis based on the structure of plant cytoplasm. J. exp. Bot. 13, 152–160 (1962).Google Scholar
  22. Thaine, R.: Movement of sugars through plants by cytoplasmic pumping. Nature (Lond.) 222, 873–875 (1969).Google Scholar
  23. Trip, P., Gorham, P. R.: Bidirectional translocation of sugars in sieve tubes of squash plants. Plant Physiol. 43, 877–882 (1968).Google Scholar
  24. Tyree, M. T., Fensom, D. S.: Some experimental and theoretical observations concerning mass flow in the vascular bundles of Heracleum. J. exp. Bot. 21, 304–324 (1970).Google Scholar
  25. Vries, H. de: Über die Bedeutung der Circulation und der Rotation des Protoplasma für Stofftransport in der Pflanze. Bot. Z. 43, 1–6, 16–26 (1885).Google Scholar
  26. Weatherley, P. E., Johnson, R. P. C.: The form and function of the sieve tube: A problem in reconciliation. Int. Rev. Cytol. 24, 149–192 (1968).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • Walter Eschrich
    • 1
    • 2
  • Ray F. Evert
    • 1
    • 2
  • John H. Young
    • 1
    • 2
  1. 1.Forstbotanisches Institut der UniversitätGöttingenGermany
  2. 2.Department of Botany and School of PharmacyUniversity of WisconsinMadisonUSA

Personalised recommendations