Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Catabolic ring-cleavage of tyrosine in plant cell cultures


Ten species of plants from 8 families, grown as sterile cell cultures, were examined for their ability to degrade the aromatic ring of l-tyrosine and two of its metabolites, homogentisic acid and 3,4-dihydroxyphenylalanine (DOPA). All cultures showed low levels of tyrosine degradation (0.3–2.6% in 24 h) and high levels of homogentisic acid degradation (9.3–31.0% in 24 h). Cultures of Amaranthus caudatus L. resembled the other nine species in possessing a moderate capacity for DOPA degradation (0.3–11.1% in 24 h).

This is a preview of subscription content, log in to check access.


  1. Andrews, R. S., Pridham, J. B.: Melanins from DOPA-containing plants. Phytochemistry 6, 13–18 (1967).

  2. Berlin, J., Barz, W., Harms, H., Haider, K.: Degradation of phenolic compounds in plant cell cultures. FEBS Letters. 16, 141–146 (1971).

  3. Bolkart, K. H., Zenk, M. H.: The homogenetisate pathway in the biosynthesis of 2,7-dimethyl-1,4-naphthoquinone (chimaphilin). Z. Pflanzenphysiol. 61, 356–359 (1969).

  4. Bough, W. A., Gander, J. E.: Exogenous l-tyrosine metabolism and dhurrin turnover in sorghum seedlings. Phytochemistry 10, 67–78 (1971).

  5. Constabel, F., Nassif-Makki, H.: Betalainbildung in Beta-Calluskulturen. Ber. dtsch. bot. Ges. 84, 629–636 (1971).

  6. Craigie, J. S., McLachlan, J., Towers, G. H. N.: A note on the fission of an aromatic ring by algae. Canad. J. Bot. 43, 1589–1590 (1965).

  7. Durand, R., Zenk, M. H.: The homogentisate ring-cleavage pathway in the biosynthesis of naphthoquinones in higher plants (Droseraceae). Phytochemistry, in press (1972).

  8. Durmishidze, S. V., Ugrekhelidze, D. S., Dzhikia, A. N., Tsevelidze, D. S.: Intermediate products of fermentative oxidation of benzol and phenol. Dokl. Akad. Nauk SSSR 184, 466–468 (1969).

  9. Ellis, B. E.: A survey of catechol ring-cleavage by sterile plant tissue cultures. FEBS Letters 18, 228–230 (1971).

  10. Ellis, B. E., Major, G., Zenk, M. H.: Preparation of l-tyrosine-ring-14C, l-DOPA-ring-14C and related metabolites. Analyt. Biochem., in press (1973).

  11. Ellis, B. E., Towers, G. H. N.: Degradation of aromatic compounds by sterile plant tissues. Phytochemistry 9, 1457–1461 (1970).

  12. Finkle, B. J., Nozaki, M., Fujisawa, H.: Ring-cleavage of plant catechols by crystalline oxygenases. Phytochemistry 10, 235–242 (1971).

  13. Gamborg, O. L., Eveleigh, D. E.: Culture methods and detection of glucanases in suspension cultures of wheat and barley. Canad. J. Biochem. 46, 417–421 (1968).

  14. Harms, H., Haider, K., Berlin, J., Kiss, P., Barz, W.: Über o-Demethylierung und Decarboxylierung von Benzoesäuren in pflanzlichen Zellsuspensionskulturen. Planta (Berl.) 105, 342–351 (1972).

  15. Harms, H., Söchtig, H., Haider, K.: Aufnahme und Umwandlung von in unterschiedlichen Stellungen 14C-markierten Phenolcarbonsäuren in Weizenkeimpflanzen. Z. Pflanzenphysiol. 64, 437–445 (1971).

  16. Hillis, W. E., Isoi, K.: The biosynthesis of polyphenols in Eucalyptus species. Phytochemistry 4, 905–918 (1965).

  17. Ibrahim, R. K., Lawson, S. G., Towers, G. H. N.: Formation of labelled sugars from l-tyrosine-14C in some higher plants. Canad. J. Biochem. 39, 873–880 (1961).

  18. Impellizzeri, G., Piattelli, M.: Biosynthesis of indicaxanthin in Opuntia ficusindica fruits. Phytochemistry 11, 2499–2502 (1972).

  19. Kindl, H.: Zur Biosynthese des Sinalbins. Die Bildung von Sinalbin in Senfpflanzen verschiedenen Alters. Mh. Chem. 96, 527–532 (1965).

  20. Köhler, K.-H.: Über die Farbstoffbildung bei Amaranthus caudatus L. Naturwissenschaften 52, 561 (1965).

  21. Kovacs, P., Jandra, A.: Biosynthesis of alkaloids. On the transformation of tyrosine to 3,4-dihydroxyphenylalanine in Papaver somniferum plants. Experientia (Basel) 21, 18–19 (1965).

  22. Miller, H. E., Rosler, H., Wohlpart, A., Wyler, H., Wilcox, M. E., Frohofer, H., Mabry, T. J., Dreiding, A. S.: Biogenese der Betalaine. Biotransformation von DOPA und Tyrosin in den Betalaminsäureteil des Betanins. Helv. chim. Acta 51, 1470–1474 (1968).

  23. Runeckles, V. C.: Formation of sugars from phenylpropanoid compounds in tobacco leaf discs. Canad. J. Bot. 41, 823–829 (1963).

  24. Sharples, D., Spring, M. S., Stoker, J. R.: Biosynthesis of the major cyanogenic glycoside of Thalictrum aquilegifolium. Phytochemistry 11, 2999–3003 (1972).

  25. Whistance, G. R., Threlfall, D. R.: Biosynthesis of phytoquinones. Homogentisic acid: a precursor of plastoquinones, tocopherols, and α-tocopherolquinone in higher plants, green algae and blue-green algae. Biochem. J. 117, 593–600 (1970).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ellis, B.E. Catabolic ring-cleavage of tyrosine in plant cell cultures. Planta 111, 113–118 (1973).

Download citation


  • Cell Culture
  • Tyrosine
  • Plant Cell
  • Aromatic Ring
  • Moderate Capacity