, Volume 133, Issue 1, pp 21–25 | Cite as

The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism

  • Christine H. Foyer
  • Barry Halliwell


Both glutathione and an NADPH-dependent glutathione reductase are present in spinach (Spinacia oleracea L.) chloroplasts. It is proposed that glutathione functions to stabilise enzymes of the Calvin cycle, and it may also act to keep ascorbic acid in chloroplasts in the reduced form.

Key words

Glutathione Chloroplasts Calcin cycle Ascorbic acid Spinacia 



tripeptide glutathione


reduced form of glutathione


oxidised form of glutathione


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, D.G., Stafford, H.A., Conn, E.E., Vennesland, B.: The distribution in higher plants of NADP+-linked enzyme systems capable of reducing glutathione. Plant Physiol. 27, 675–684 (1953)Google Scholar
  2. Anderson, L.E.: Light modulation of the activity of carbon metabolism enzymes. In proceedings of the third international congress on photosynthesis (Ed. Avron, M.) p. 1393–1405. Amsterdam: Elsevier 1975Google Scholar
  3. Arnon, D.I.: Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiol. 24, 1–15 (1949)Google Scholar
  4. Barbareschi, D., Longo, G.P., Servattez, O., Zulian, T., Longo, C.P.: Citrate synthetase in mitochondria and glyoxysomes of maize scutellum. Plant Physiol. 53, 802–807 (1974)Google Scholar
  5. Bradbeer, J.W.: The activities of the photosynthetic carbon cycle enzymes of greening bean leaves. New Phytol. 68, 233–245 (1969)Google Scholar
  6. Buchanan, B.B., Schürmann, P., Kalberer, P.P.: Ferredoxin-activated fructose diphosphatase of spinach chloroplasts. J. biol. Chem. 246, 5952–5959 (1971)Google Scholar
  7. Egneus, H., Heber, U., Matthiesen, U., Kirk, M.: Reduction of O2 by the electron transport chain of chloroplasts during assimilation of CO2. Biochim. biophys. Acta (Amst.) 408, 252–268 (1975)Google Scholar
  8. Feierabend, J., Beevers, H.: Developmental studies on microbodies in wheat leaves. Conditions influencing enzyme development. Plant Physiol 49, 28–32 (1972)Google Scholar
  9. Gerhardt, B.: Untersuchungen über Beziehungen zwischen Ascorbinsäure und Photosynthese. Planta 61, 101–129 (1964)Google Scholar
  10. Hall, D.O.: Nomenclature for isolated chloroplasts. Nature New Biol. 235, 125–126 (1972)Google Scholar
  11. Halliwell, B.: The role of formate in photorespiration. Biochem. Soc. Trans 1, 1147–1150 (1973)Google Scholar
  12. Halliwell, B.: Marker enzymes of plant cell organelles. In Methodological developments in biochemistry, vol. 4. (Ed. Reid, E), pp 357–366 (1974a) London: Longmans 1974Google Scholar
  13. Halliwell, B.: Superoxide dismutase, catalase and glutathione peroxidase: solutions to the problems of living with O2. New Phytol. 73, 1075–1086 (1974b)Google Scholar
  14. Heldt, H.W., Werden, K., Milovancev, M., Geller, G.: Alkalisation of the chloroplast stroma caused by light-dependent H+ influx into the thylakoid space. Biochim. biophys. Acta (Amst.) 314, 224–241 (1973)Google Scholar
  15. Hendley, D.D., Conn, E.E.: Enzymic reduction and oxidation of glutathione by illuminated chloroplasts. Arch. biochem. biophys. 46, 454–464 (1953)Google Scholar
  16. Jennings, R.C., Forti, G.: Involvement of O2 during photosynthetic induction. In proceedings of the third international congress on photosynthesis (Ed. Avron, M) pp. 735–743. Amsterdam: Elsevier 1975Google Scholar
  17. Jocelyn, P.C.: Biochemistry of the thiol group. New York: Academic Press 1972Google Scholar
  18. Latzko, E., Gibbs, M.: Distribution and activity of enzymes of the reductive pentose phosphate cycle in spinach leaves and in chloroplasts isolated by different methods. Z. Pflanzenphysiol. 59, 184–194 (1968)Google Scholar
  19. Lilley, R.M., Fitzgerald, M.P., Rienits, K.G., Walker, D.A.: Criteria of intactness and the photosynthetic activity of spinach chloroplast preparations. New Phytol. 75, 1–10 (1975)Google Scholar
  20. Mapson, L.W.: Metabolism of ascorbic acid in plants: function. Ann. Rev. Plant Physiol. 9, 119–150 (1958)Google Scholar
  21. Pick, U., Rottenberg, H., Avron, M.: Effect of phosphorylation on the size of the H+ gradient across chloroplast membranes. FEBS Lett. 32, 91–94 (1973)Google Scholar
  22. Reeves, S.G., Hall, D.O.: The stoichiometry (ATP/2ē ratio) of non-cyclic photophosphorylation in isolated spinach chloroplasts. Biochim. biophys. Acta (Amst.) 314, 66–78 (1973)Google Scholar
  23. Schnarrenberger, C., Oeser, A., Tolbert, N.E.: Two isoenzymes each of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in spinach leaves. Arch. biochem. biophys. 154, 438–448 (1973)Google Scholar
  24. Schönfeld, M., Rahat, M., Neumann, J.: Photosynthetic reactions in the marine alga Codium vermilara. Plant Physiol. 52, 283–287 (1973)Google Scholar
  25. Tietze, F.: Enzymic method for quantitative determination of nanogram amounts of total and oxidised glutathione. Anal. Biochem. 27, 502–522 (1969)Google Scholar
  26. Tolbert, N.E.: Microbodies-peroxisomes and glyoxysomes. Ann. Rev. Plant. Physiol. 22, 45–73 (1971)Google Scholar
  27. Tolbert, N.E., Oeser, A., Yamazaki, R.K., Hageman, R.H., Kisaki, T.: A survey of plants for leaf peroxisomes. Plant Physiol. 44, 135–147 (1969)PubMedGoogle Scholar
  28. Trench, R.K., Boyle, J.E., Smith, D.C.: The association between chloroplasts of Codium fragile and the molluse Elysia viridis. Characteristics of isolated Codium chloroplasts. Proc. Roy. Soc. Lond. A 184, 51–61 (1973)Google Scholar
  29. Walker, D.A.: Chloroplasts (and grana): aqueous — including high carbon fixation ability. Methods Enzymol 23A, 211–220 (1971)Google Scholar
  30. Yamaguchi, M., Joslyn, M.A.: Investigation of ascorbic acid dehydrogenase of peas (Pisum sativum) and its distribution in the developing plant. Plant Physiol. 26, 757–772 (1951)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Christine H. Foyer
    • 1
  • Barry Halliwell
    • 1
  1. 1.Department of BiochemistryKing's CollegeLondonU.K.

Personalised recommendations