, Volume 99, Issue 4, pp 311–318 | Cite as

Änderungen von Enzymaktivitäten während des Wachstums von Zellsuspensionskulturen vonGlycine max: Phenylalanin Ammonium-Lyase und p-Cumarat: CoA Ligase

  • K. Hahlbrock
  • E. Kuhlen
  • T. Lindl

Changes in enzyme activities during the growth of cell suspension cultures ofGlycine max: Phenylalanine ammonia-lyase and p-coumarate: CoA ligase


  1. 1.

    A typical growth curve including a lag phase, phases of cell division and cell expansion and a stationary phase could be demonstrated for batch propagated cells ofGlycine max. in synthetic liquid medium.

  2. 2.

    Shortly before the stationary phase was reached, dramatic changes in the activities of two enzymes of “secondary plant metabolism”, phenylalanine ammonia-lyase and p-coumarate: CoA ligase, were observed. In contrast, the activity of acetate:CoA ligase remained constant during this period of time, indicating that primary cell metabolism was unaffected.

  3. 3.

    Activities of both enzymes, phenylalanine ammonia-lyase and p-coumarate: CoA ligase, could be enhanced by light. Using disc gel electrophoresis it was not possible to detect isoenzymes of phenylalanine ammonia-lyase in extracts either from cells grown in the dark or from those treated with light.



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amrhein, N., Zenk, M. H.: Untersuchungen zur Rolle der Phenylalanin-Ammonium-Lyase (PAL) bei der Regulation der Flavonoidsynthese im Buchweizen (Fagopyrum esculentum Moench). Z. Pflanzenphysiol.64, 145–168 (1971).Google Scholar
  2. Berlin, J., Barz, W.: Stoffwechsel von Isoflavonen und Cumöstanen in Zell- und Callussuspensionskulturen vonPhaseolus aureus Roxo. Planta (Berl.)98, 300–314 (1971).Google Scholar
  3. Constabel, F., Shyluk, J. P., Gamborg, O. L.: The effect of hormones on anthocyanin accumulation in cell cultures ofHaplopappus gracilis. Planta (Berl.)96, 306–316 (1971).Google Scholar
  4. Dougall, D. K.: Biosynthesis of protein amino acids in plant tissue culture. II. Further isotope competition experiments using protein amino acids. Plant Physiol.41, 1411–1415 (1966).Google Scholar
  5. Fletcher, J. S., Beevers, H.: Acetate metabolism in cell suspension cultures. Plant Physiol.45, 765–772 (1970).Google Scholar
  6. Fritsch, H., Hahlbrock, K., Grisebach, H.: Biosynthese von Cyanidin in Zellsuspensionskulturen vonHaplopappus gracilis. Z. Naturforsch., zur Veröffentlichung eingereicht.Google Scholar
  7. Gamborg, O. L.: Aromatic metabolism in plants. II. Enzymes of the shikimate pathway in suspension cultures of plant cells. Canad. J. Biochem.44, 791–799 (1966).Google Scholar
  8. —, Miller, R. A., Ojima, K.: Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res.50, 151–158 (1968).Google Scholar
  9. Glasziou, K. T.: Control of enzyme formation and inactivation in plants. Ann. Rev. Plant. Physiol.20, 63–88 (1969).Google Scholar
  10. Hahlbrock, K.: Isolation of apigenin from illuminated cell suspension cultures of soybean,Glycine max. Phytochem., zur Veröffentlichung eingereicht.Google Scholar
  11. Hahlbrock, K., Ebel, J., Ortmann, R., Sutter, A., Wellmann, E., Grisebach, H.: Regulation of enzyme activities related to the biosynthesis of flavone glycosides in cell suspension cultures of parsley (Petroselinum hortense). Biochim. biophys. Acta (Amst.), zur Veröffentlichung angenommen.Google Scholar
  12. —, Grisebach, H.: Formation of coenzyme A esters of cinnamic acids with an enzyme preparation from cell suspension cultures of parsley. FEBS Letters11, 62–64 (1970).Google Scholar
  13. —, Sutter, A., Wellmann, E., Ortmann, R., Grisebach, H.: Relationship between organ development and activity of enzymes involved in flavone glycoside biosynthesis in young parsley plants. Phytochem.10, 109–116 (1971a).Google Scholar
  14. —, Wellmann, E.: Light-induced flavone biosynthesis and activity of phenylalanine ammonia-lyase and UDP-apiose synthetase in cell suspension cultures ofPetroselinum hortense. Planta (Berl.)94, 236–239 (1970).Google Scholar
  15. Halperin, W.: Alternate morphogenetic events in cell suspensions. Amer. J. Bot.53, 443–453 (1966).Google Scholar
  16. —: Morphogenesis in cell cultures. Ann. Rev. Plant Physiol.20, 395–418 (1969).Google Scholar
  17. Henshaw, G. G., Jha, K. K., Mehta, A. R., Shakeshaft, D. Joan, Street, H. E.: Studies on growth in culture of plant cells. I. Growth patterns in batch propagated suspension cultures. J. exp. Bot.17, 362–377 (1966).Google Scholar
  18. Maurer, H. R.: Disk-Elektrophorese. Berlin: Walter de Gruyter 1968.Google Scholar
  19. Miller, C. O.: Control of deoxyisoflavone synthesis in soybean tissue. Planta (Berl.)87, 26–35 (1969).Google Scholar
  20. Schopfer, P., Hock, B.: Nachweis der Phytochrom-induziertende novo-Synthese von Phenylalanin-Ammoniumlyase (PAL, E.C. in Keimlingen vonSinapis alba L. durch Dichtemarkierung mit Deuterium. Planta (Berl.)96, 248–253 (1971).Google Scholar
  21. Swain, T., Williams, C. A.: The role of phenylalanine in flavonoid biosynthesis. Phytochem.9, 2115–2122 (1970).Google Scholar
  22. Verma, D. P. S., Huystee, R. B. van: Cellular differentiation and peroxidase isoenzymes in cell culture of peanut cotyledons. Canad. J. Bot.48, 429–431 (1970a).Google Scholar
  23. ——: Relationship between peroxidase, catalase, and protein synthesis during cellular development in cell cultures of peanut. Canad. J. Biochem.48, 444–449 (1970b).Google Scholar
  24. Zucker, M.: Rate of phenylalanine ammonia-lyase synthesis in darkness. Biochim. biophys. Acta (Amst.)208, 331–333 (1970).Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • K. Hahlbrock
    • 1
  • E. Kuhlen
    • 1
  • T. Lindl
    • 1
  1. 1.Lehrstuhl für Biochemie der PflanzenBiologisches Institut II der UniversitätFreiburg i.Br.

Personalised recommendations