Advertisement

Planta

, Volume 68, Issue 2, pp 111–140 | Cite as

Die Reaktionen des CO2-Regelsystems in den Schliesszellen von Zea mays auf Weisses Licht

  • Klaus Raschke
Article

Zusammenfassung

Öffnungsgeschwindigkeit und Gleichgewichtseinstellung der Stomata wurden als Reaktionen auf stufenweise Veränderungen der Bestrahlungsstärke registriert. Die Messungen erfolgten porometrisch in Luft, in CO2-freier Luft und in Stickstoff.

Der CO2-Regelungsmechanismus der Stomata ist auch für das Verhalten gegenüber der Strahlung verantwortlich. Licht greift in das Regelungssystem an drei Orten ein:

  1. 1.

    Licht setzt die Assimilation in Gang und senkt dadurch die CO2-Konzentration im Blatt. Es wirkt als Störgröße des Regelungssystems. Diese Lichtreaktion wird in ihrer Abhängigkeit von der Bestrahlungsstärke durch eine Sättigungskurve abgebildet.

     
  2. 2.

    Licht kann den Öffnungsmechanismus der Schließzellen unabhängig von der CO2-Assimilation speisen. Es versorgt den “Regelverstärker” mit Hilfsenergie, wahrscheinlich in Verbindung mit einem Intermediärschritt der Photophosphorylierung. Diese Reaktion folgt —mindestens bis 60 mW cm-2 — einer linearen Funktion der Bestrahlungsstärke.

     
  3. 3.

    Licht ruft reversible Ermüdungs- und Erholungserscheinungen hervor. Es steuert die Führungsgröße des Regelkreises und den Ausnutzungsgrad der Hilfsenergie. Diese Reaktionen sind quantitative noch nicht erfaßt und scheinen über das Plasma und seine Grenzschichten zu erfolgen.

     

Es wird eine Hypothese aufgestellt, nach der die Stomabewegung aus dem Zusammenspiel eines Systems der Osmoregulation mit einem der Turgorregulation entsteht. Licht und CO2 steuern den Turgor der Schließzellen über Beeinflussungen des Plasmas.

The responses of the CO2-control system in the stomates of Zea mays to white light

Summary

Stomatal movements were recorded in isolated leaf sections of Zea mays. Through continuous operation of the porometers it was possible to follow the reactions of the stomatal feedback system.

White light was provided by a high-pressure xenon arc. Radiation intensity was varied in steps. The experiments were performed in air, in air free of CO2, and in nitrogen.

The equilibrium width of the stomata and the speed of the opening movement were measured and evaluated.

The experimental analysis of the stomatal reactions confirmed that the CO2-feedback system is clearly responsible for the stomatal responses to light. Light interferes at three stages of the servo-system:

  1. 1.

    Light starts and maintains assimilation. Through the agency of this process the CO2 concentration within the leaf is lowered. Light may be regarded as an ingoing or disturbing signal. The dependence of this reaction on radiation intensity is described by a saturation curve.

     
  2. 2.

    Light supplies energy to the opening mechanism of the stomata. This process is independent of the assimilation of carbon dioxide. Light is a source of auxiliary energy for the controlled system. Most probably energy is derived from an intermediary step of photosynthetic phosphorylation. This reaction shows a linear dependence on light intensity, at least up to 60 mW cm-2, and occurs to the same extent in air, in air minus CO2, and in nitrogen.

     
  3. 3.

    Light induces reversible effects of fatigue and recovery. It adjusts the level at which the stomata are in equilibrium as well as the speed of the subsequent opening movements. Light influences the command signal of the controlling system and the efficiency of utilisation of auxiliary energy. These reactions occur equally in air, in CO2-free air, and in nitrogen. They cannot be described quantitatively as yet and appear to be located in the cytoplasm, probably at the interfaces.

     

An hypothesis is suggested according to which stomatal movement results from an interaction of an osmotic regulatory system with a system of turgor control, the former providing energy for the latter. Osmoregulation is achieved by energy-dependent ion translocations in mitochondria and chloroplasts; turgor adjustments are made through changes in the permeabilities for water and solutes, brought about by CO2 and light.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Arisz, W. H., and H. H. Sol: Influence of light and sucrose on the uptake and transport of chloride in Vallisneria leaves. Acta bot. neerl. 5, 218–246 (1956).Google Scholar
  2. Arnon, D. I.: Photosynthetic phosphorylation and the energy conversion process in photosynthesis. In: T. W. Goodwin, and O. Lindberg, Biological structure and function, p. 339–409. London and New York: Academic Press 1961.Google Scholar
  3. Brauner, L.: Phototropismus und Photonastie der Laubblätter. In: Handbuch der Pflanzenphysiologie, Bd. XVII/1, S. 472–491. Berlin-Göttingen-Heidelberg: Springer 1959.Google Scholar
  4. Brown, W. V., and Sr. C. Johnson: The fine structure of the grass guard cell. Amer. J. Bot. 49, 110–115 (1962).Google Scholar
  5. Bünning, E.: Entwicklungs- und Bewegungsphysiologie der Pflanze. Berlin-Göttingen-Heidelberg: Springer 1953.Google Scholar
  6. Heath, O. V. S.: An experimental investigation of the mechanism of stomatal movement, with some preliminary observations upon the response of the guard cells to “shock”. New Phytologist 37, 385–395 (1938).Google Scholar
  7. : Light and carbon dioxide in stomatal movements. Handbuch der Pflanzenphysiologie, Bd. XVII/1, S. 415–464. Berlin-Göttingen-Heidelberg: Springer 1959.Google Scholar
  8. , and F. L. Milthorpe: Studies in stomatal behaviour. V. The role of carbon dioxide in the light response of stomata. Part II. Preliminary experiments on the interrelations of light intensity, carbon dioxide concentration, and rate of air flow in controlling the movement of wheat stomata. J. exp. Bot. 1, 227–243 (1950).Google Scholar
  9. , and J. Russell: Studies in stomatal behaviour. VI. An investigation of the light responses of wheat stomata with the attempted elimination of control by the mesophyll. J. exp. Bot. 5, 1–15, 269–292 (1954).Google Scholar
  10. Itoh, M., S. Izawa, and K. Shibata: Shrinkage of whole chloroplasts upon illumination. Biochim. biophys. Acta (Amst.) 66, 319–327 (1963).Google Scholar
  11. Jagendorf, A. T., and G. Hind: Studies on the mechanism of photophosphorylation. National Academy of Sciences, Publ. 1145, p. 599–610, Washington 1963.Google Scholar
  12. Karvé, A.: Die Wirkung verschiedener Lichtqualitäten auf die Öffnungsbewegung der Stomata. Z. Bot. 49, 47–72 (1961).Google Scholar
  13. Kesseler, H.: Die Bedeutung einiger anorganischer Komponenten des Seewassers für die Turgorregulation von Chaetomorpha linum (Cladophorales). Helgol. Wiss. Meeresunters. 10, 73–90 (1964).Google Scholar
  14. Ketellapper, H. J.: Stomatal physiology. Ann. Rev. Plant Physiol. 14, 249–270 (1963).CrossRefGoogle Scholar
  15. Kisselew, N.: Veränderung der Durchlässigkeit des Protoplasma der Schließzellen im Zusammenhange mit stomatären Bewegungen. Beih. bot. Zbl. 41, 287–308 (1925).Google Scholar
  16. Kuiper, P. J. C.: Water transport across root cell membranes: Effect of alkenylsuccinic acids. Science 143, 690–691 (1964a).Google Scholar
  17. : Action spectrum of stomatal movement in epidermis tissue of Senecio odoris Defl. Plant Physiol. 39, 952–955 (1964b).Google Scholar
  18. Kushida, H., M. Itoh, S. Izawa, and K. Shibata: Deformation of chloroplasts on illumination in intact spinach leaves. Biochim. biophys. Acta (Amst.) 79, 201–203 (1964).Google Scholar
  19. Liebig, M.: Untersuchungen über die Abhängigkeit der Spaltweite der Stomata von Intensität und Qualität der Strahlung. Planta (Berl.) 33, 206–257 (1942).Google Scholar
  20. Linsbauer, K.: Beiträge zur Kenntnis der Spaltöffnungsbewegungen. Flora (Jena) 9, 100–143 (1916).Google Scholar
  21. : Weitere Beobachtungen an Spaltöffnungen. Planta (Berl.) 3, 527–561 (1927).Google Scholar
  22. Lookeren Campagne, R. N. van: Light-dependent chloride absorption in Vallisneria leaves. Acta bot. neerl. 6, 543–582 (1957).Google Scholar
  23. Mansfield, T. A.: The low light intensity reaction of stomata: effects of red light on rhythmic stomatal behaviour in Xanthium pennsylvanicum. Proc. roy. Soc. B 162, 567–574 (1965).Google Scholar
  24. Meidner, H.: The minimum intercellular-space CO2-concentration (Γ) of maize leaves and its influence on stomatal movements. J. exp. Bot. 13, 284–293 (1962).Google Scholar
  25. , and D. C. Spanner: The differential transpiration porometer. J. exp. Bot. 10, 190–205 (1959).Google Scholar
  26. Moss, D.: Optimum lighting of leaves. Crop Sci. 4, 131–136 (1964).Google Scholar
  27. Mukohata, Y., and L. Packer: Simultaneous viscosity changes in chloroplast suspensions upon illumination. Biochim. biophys. Acta (Amst.) 79, 211–213 (1964).Google Scholar
  28. Nishida, K.: Studies on stomatal movement of crassulacean plants in relation to the acid metabolism. Physiol. Plant. 16, 281–298 (1963).Google Scholar
  29. Nobel, P. S., and L. Packer: Energy-dependent ion uptake in spinach chloroplasts. Biochim. biophys. Acta (Amst.) 88, 453–455 (1964).Google Scholar
  30. Paasche, E.: A tracer study of the inorganic carbon uptake during coccolith formation and photosynthesis in the coccolithophorid Coccolithus huxleyi. Physiol. Plant., Suppl. 3, 82p. (1964).Google Scholar
  31. Packer, L.: Light scattering changes correlated with photosynthetic phosphorylation in chloroplast fragments. Biochem. Biophys. Res. Commun. 9, 355–360 (1962).Google Scholar
  32. : Control of chloroplast structure by adenosine triphosphate. In: Photosynthesis mechanisms in green plants. National Academy of Sciences Publ. 1145, p. 587–598, Washington 1963.Google Scholar
  33. Packer, L., P.-A. Siegenthaler, and P. S. Nobel: Light-induced high-amplitude swelling of spinach chloroplasts. Biochem. Biophys. Res. Commun., in press (1965).Google Scholar
  34. Raschke, K.: Eignung und Konstruktion registrierender Porometer für das Studium der Schließzellenphysiologie. Planta 67, 225–241 (1965a).Google Scholar
  35. Raschke, K.: Die Stomata als Glieder eines schwingungsfähigen CO2-Regelsystems. Experimenteller Nachweis an Zea mays L. Z. Naturforsch., im Druck (1965b).Google Scholar
  36. Rüsch, J., u. J. Müller: Die Verwendung der Xenon-Hochdrucklampe zu Assimilationsversuchen. Ber. dtsch. bot. Ges. 70, 489–500 (1957).Google Scholar
  37. Scarth, G. W.: Mechanism of the action of light and other factors on stomatal movement. Plant Physiol. 7, 481–504 (1932).Google Scholar
  38. , and M. Shaw: Stomatal movement and photosynthesis in Pelargonium. I. Effects of light and carbon dioxide. Plant Physiol. 26, 207–225 (1951).Google Scholar
  39. Schwendener, S.: Die Spaltöffnungen der Gramineen und Cyperaceen. S.-B. Berl. Akad. Wiss., 1889, 65–78.Google Scholar
  40. Shen, Y.-K., Y.-T. Li, G.-M. Shen, and H.-C. Lin: Studies on photophosphorylation. VII. On the nature of the intermediate accumulated in the chloroplasts during illumination. Acta biochim. biophys. sinica 3, 278–292 (1963).Google Scholar
  41. Stålfelt, M. G.: Die stomatäre Transpiration und die Physiologie der Spaltöffnungen. Handbuch der Pflanzenphysiologie, Bd. III, S. 351–426. Berlin-Göttingen-Heidelberg: Springer 1956.Google Scholar
  42. : The relation between the endogenous and induced elements of the stomatal movements. Physiol. Plant. 18, 177–184 (1965).Google Scholar
  43. Virgin, H. I.: The effect of light on the protoplasmic viscosity. Physiol. Plant. 4, 255–357 (1951).Google Scholar
  44. : An action spectrum for the light induced changes in the viscosity of plant protoplasm. Physiol. Plant. 5, 575–582 (1952).Google Scholar
  45. Weigl, J.: Über den Zusammenhang von Photophosphorylierung und aktiver Ionenaufnahme. Z. Naturforsch. 19b, 845–851 (1964).Google Scholar
  46. Went, F. W.: The experimental control of plant growth, 343 p. Waltham, Mass., Chronica Botanica Company 1957.Google Scholar

Copyright information

© Springer-Verlag 1966

Authors and Affiliations

  • Klaus Raschke
    • 1
  1. 1.Botanisches Institut der Universität GießenGießenDeustchland

Personalised recommendations