, Volume 112, Issue 3, pp 201–212

Carrageenans in the gametophytic and sporophytic stages of Chondrus crispus

  • E. L. McCandless
  • J. S. Craigie
  • J. A. Walter


The morphologically similar sporophytic and gametophytic plants of Chondrus crispus Stackhouse were examined and it was shown that the former contain λ-carrageenan. The gametophytes contain ϰ- and two additional carrageenans which are KCl-soluble and may comprise up to 25% of the total carrageenan. After alkaline modification, these KCl-soluble components were separated into a gel and a soluble carrageenan. The gel was indistinguishable from ϰ-carrageenan and presumably was derived from μ-carrageenan while the KCl-soluble fraction possessed a unique infrared spectrum easily distinguished from alkali-modified λ-carrageenan. This appears to represent a third carrageenan in the gametophytes.

Our observations suggest that the biologically separate plants of C. crispus exhibit distinctive patterns of sulfation of their galactans. The sporophytes add SO42- at C2 of the precursor, whereas the gametophytes appear to add it principally at the available C4 positions. Both types of plant are capable of sulfating at C6 of the 4-linked galactose unit.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, N. S., Dolan, T. C. S., Lawson, C. J., Penman, A., Rees, D. A.: Carrageenans. V. The masked repeating structures of λ- and μ-carrageenans. Carbohyd. Res., 7, 468–473 (1968a).Google Scholar
  2. Anderson, N. S., Dolan, T. C. S., Penman, A., Rees, D. A., Mueller, G. P., Stancioff, D. J., Stanley, N. F.: Carrageenans. IV. Variations in the structure and gel properties of ϰ-carrageenan, and the characterization of sulphate esters by infrared spectroscopy. J. chem. Soc. C, 602–606 (1968b).Google Scholar
  3. Anderson, N. S., Dolan, T. C. S., Rees, D. A.: Carrageenans. III. Oxidative hydrolysis of methylated ϰ-carrageenan and evidence for a masked repeating structure. J. chem. Soc. C, 596–601 (1968c).Google Scholar
  4. Black, W. A. P., Blakemore, W. R., Colquhoun, J. A., Dewar, E. T.: The evaluation of some red marine algae as a source of carrageenan and of its ϰ- and λ-components. J. Sci. Food Agric. 16, 573–585 (1965).PubMedGoogle Scholar
  5. Chen, L. C.-M., McLachlan, J.: The life history of Chondrus crispus in culture. Canad. J. Bot. 50, 1055–1060 (1972).Google Scholar
  6. Chen, L. C.-M., McLachlan, J., Neish, A. C., Shacklock, P. F.: The ratio of kappa-to lambda-carrageenan in nuclear phases of the rhodophycean algae Chondrus crispus and Gigartina stellato. J. marine biol. Ass. 53, 11–16 (1973).Google Scholar
  7. Dolan, T. C. S., Rees, D. A.: The carrageenans. II. The position of the glycosidic linkages and sulphate esters in λ-carrageenan. J. chem. Soc. 3534–3539 (1965).Google Scholar
  8. Fuller, S. W.: Some factors affecting the concentration and properties of carrageenan in Chondrus crispus Stackhouse. Ph. D. Thesis Univ. of New Hampshire, Durham, N. H. U.S.A. (1971).Google Scholar
  9. Gordon, E. M., McCandless, E. L.: Ultrastructure and histochemistry of Chondrus crispus Stackhouse. Proc. Nova Scot. Inst. Sci., in press (1973).Google Scholar
  10. Hirase, S., Watanabe, K.: The presence of pyruvate residues in λ-carrageenan and a similar polysaccharide. Bull. Inst. Chem. Res. Kyoto Univ 50, 332–336 (1972).Google Scholar
  11. Jones, A. S., Letham, D. S.: A submicro method for the estimation of sulphur. Chem. and Ind. 662–663 (1954).Google Scholar
  12. Marshall, S. M., Newton, L., Orr, A. P.: A study of certain British seaweeds and their utilization in the preparation of agar. London: H.M.S.O. (1949).Google Scholar
  13. McCandless, E. L., Richer, S. M.: 14C-Studies in carrageenan synthesis. Proc. Int. Seaweed Symp. 7, 491–498 (1972).Google Scholar
  14. Mueller, G. P., Rees, D. A.: Current structural views of red seaweed polysaccharides. In: Drugs from the Sea Symp., H. D. Freudenthal, ed. J. Ocean Technol., Washington, D.C. p. 241–255 (1968).Google Scholar
  15. Rees, D. A.: The carrageenan system of polysaccharides. I. The relation between the ϰ- and λ-components. J. chem. Soc. 1821–1832 (1963).Google Scholar
  16. Rees, D. A.: Carbohydrate sulphates. Ann. Rep. Prog. Chem. (Chem. Soc. London) 62, 469–487 (1965).Google Scholar
  17. Rees, D. A.: Structure, conformation, and mechanism in the formation of polysaccharide gels and networks. Adv. Carbohyd. Chem. Biochem. 24, 267–332 (1969a).Google Scholar
  18. Rees, D. A.: Conformational analysis of polysaccharides II. Alternating copolymers of the agar-carrageenan-chondroitin type by model building in the computer with calculation of helical parameters. J. chem. Soc. B, 217–226 (1969b)Google Scholar
  19. Rigney, J. A.: Chemical investigations of Chondrus crispus. Progr. Rep. 39, Indust. Dev. Branch, Dept. Fish. and Forestry, Ottawa, Canada (1971).Google Scholar
  20. Scott, J. E.: Aliphatic ammonium salts in the assay of acidic polysaccharides from tissues. Meth. biochem. Anal. 8, 145–197 (1960).Google Scholar
  21. Smidsrød, O., Larsen, B., Pernas, A. J., Haug, A.: The effect of alkali treatment on the chemical heterogeneity and physical properties of some carrageenans. Acta chem. scand., 21, 2585–2598 (1967).Google Scholar
  22. Smith, D. B., Cook, W. H., Neal, J. L.: Physical studies on carrageenin and carrageenin fractions. Arch. Biochem. Biophys. 53, 192–204 (1954).Google Scholar
  23. Stancioff, D. J., Stanley, N. F.: Infrared and chemical studies on algal polysaccharides. Proc. Int. Seaweed Symp. 6, 595–609 (1969).Google Scholar
  24. Stanley, N. F.: Process for treating a polysaccharide of seaweeds of the Gigartinaceae and Solieriaceae families. U.S. Patent No. 3, 094, 517 (1963).Google Scholar
  25. Yaphe, W., Arsenault, G. P.: Improved resorcinol reagent for the determination of fructose and 3,6-anhydrogalactose in polysaccharides Analyt. Biochem. 13, 143–148 (1965).Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • E. L. McCandless
    • 1
  • J. S. Craigie
    • 2
  • J. A. Walter
    • 2
  1. 1.Department of BiologyMcMaster UniversityHamiltonCanada
  2. 2.Atlantic Regional LaboratoryNational Research Council of CanadaHalifaxCanada

Personalised recommendations