Planta

, Volume 153, Issue 1, pp 6–13 | Cite as

Paramylon synthesis by Euglena gracilis photoheterotrophically grown under low O2 pressure

Description of a mitochloroplast complex
  • R. Calvayrac
  • D. Laval-Martin
  • J. Briand
  • J. Farineau
Article

Abstract

Special culture conditions for Euglena gracilis Z and ZR are described. They induce interactions between the chloroplast and mitochondrial metabolisms leading to paramylon synthesis. When grown in continuous light under pure nitrogen and in the presence of lactate as the sole carbon source, sugar synthesis occurs during the first 24 h of culture with the participation of both mitochondria (using lactate) and of chloroplasts (fixing CO2 from lactate decarboxylation). The activities of ribulose bisphosphate carboxylase, phosphoenolpyruvate carboxylase, and phosphoenolpyruvate carboxykinase are very high and mitochondria and chloroplasts develop then a common network of vesicles in which paramylon grains can be seen. Electron micrographs demonstrate membrane continuity between the two types of organelles. Occasionally the mitochondrial matrix and the chloroplast stroma are separated by only a unit membrane.

Key words

Aerophily (micro-) Chloroplasts Euglena Mitochondria Paramylon synthesis 

Abbreviations

Chl

chlorophyll

OAA

oxaloacetic acid

PEP

phosphoenolpyruvate

RuBP

ribulose bisphosphate

DTT

1,4-dithiothreitol

PVP

polyvinylpyrrolidone

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. App, A.A., Jagendorf, A.T. (1963) Repression of chloroplast development in Euglena gracilis by substrates. J. Protozool. 10, 340–343Google Scholar
  2. Bray, G.A. (1960) A simple effluent liquid scintillation method for counting aqueous solutions in a liquid scintillation counter. Anal. Biochem. 1, 279–285Google Scholar
  3. Briand, J., Calvayrac, R. (1980) Paramylon synthesis in heterotrophic and photoheterotrophic Euglena. J. Phycol. 16, 234–239Google Scholar
  4. Briand, J., Calvayrac, R., Laval-Martin, D., Farineau, J. (1981) Evolution of carboxylating enzymes involved in paramylon synthesis (phosphoenolpyruvate carboxylase and carboxykinase) in heterotrophically grown Euglena gracilis. Planta 151, 168–175Google Scholar
  5. Calvayrac, R. (1970) Relation entre les substrats, la respiration et la structure mitochondriale chez Euglena gracilis Z. Arch. Mikrobiol. 73, 308–314Google Scholar
  6. Calvayrac, R., Briand, J. (1978) Paramylon synthesis and the chondriome, In: Plant mitochondria, pp. 435–443, G. Ducet, C. Lance, eds., Elsevier, North HollandGoogle Scholar
  7. Calvayrac, R., Bomsel, J.L., Laval-Martin, D. (1979) Analysis and characterization of DCMU-resistant Euglena. I-Growth, metabolic and ultrastructural modifications during adaptation to different doses of DCMU. Plant Physiol. 63, 857–865Google Scholar
  8. Calvayrac, R., Laval-Martin, D., Dubertret, G., Bomsel, J.L. (1979) Analysis and characterization of DCMU-resistant Euglena. II-Modifications affecting photosynthesis during adaptation to different doses of DCMU. Plant Physiol. 63, 866–872Google Scholar
  9. Codd, G.A., Merrett, M.J. (1971) Phosphopyruvate carboxylase activity and carbon dioxide fixation via C4 acids over the division cycle in synchronized Euglena cultures. Planta 100, 124–130Google Scholar
  10. Cook, J.R. (1965) Influence of light on acetate utilization in green Euglena. Plant Cell Physiol. 6, 301–307Google Scholar
  11. Crotty, W.J., Ledbetter, M.C. (1973) Membrane continuities involving chloroplasts and organelles in plant cells. Science 182, 839–841Google Scholar
  12. Gibbs, S. (1962) The ultrastructure of the pyrenoids of green Algae. J. Ultrastruct. Res. 140, 275–282Google Scholar
  13. Jomain-Baum, M., Schramm, V.L., Hanson, R.W. (1976) Mechanism of 3-mercaptopicolinic acid inhibition of hepatic phosphoenolpyruvate carboxykinase (GTP). J. Biol. Chem. 251, 37–44Google Scholar
  14. Karn, R.C., Kivic, P.A., Hudock, G.A. (1973) A procedure for the electrophoretic analysis of PEP case. Biochim. Biophys. Acta 293, 567–569Google Scholar
  15. Laval-Martin, D., Dubertret, G., Calvayrac, R. (1977) Photosynthetic properties of a DCMU-resistant strain of Euglena gracilis Z. Plant Sci. Lett. 10, 185–195Google Scholar
  16. Laval-Martin, D., Farineau, J., Pineau, B., Calvayrac, R. (1981) Evolution of enzymes involved in carbon metabolism (phosphenolpyruvate and ribulose bisphosphate carboxylases, phosphoenolpyruvate carboxykinase) during the light-induced greening of Euglena gracilis strains Z and ZR. Planta 151, 157–167Google Scholar
  17. Levedahl, B.H. (1966) Heterotrophic CO2 fixation by a bleached Euglena. Exp. Cell Res. 44, 393–402Google Scholar
  18. Liang, T., Raugi, J.G., Blum, J.J. (1976) Inhibition of P-enolpyruvate carboxykinase and of glyconeogenesis in Tetrahymena by 3-mercaptopicolinic acid. J. Protozool. 23, 473–477Google Scholar
  19. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. (1951) Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265–275PubMedGoogle Scholar
  20. Mac Kinney, G. (1941) Absorption of light by chlorophyll solutions. J. Biol. Chem. 140, 315–322Google Scholar
  21. Montes, G., Bradbeer, J.W. (1976) An association of chloroplasts and mitochondria in Zea mays and Hyptis suaveolens. Plant Sci. Lett. 6, 35–41Google Scholar
  22. Ohmann, E., Plhâk, F. (1969) Reinigung und Eigenschaften von Phosphoenolpyruvat-case aus Euglena gracilis. Eur. J. Biochem. 10, 43–55Google Scholar
  23. Orcival-Lafont, A.M., Calvayrac, R. (1974) Le plastidome chez Euglena gracilis Z. J. Phycol. 10, 300–307Google Scholar
  24. Rathnam, C.K.M., Edwards, G.E. (1977) C4-dicarboxylic acid metabolism in bundle-sheath chloroplasts, mitochondria and strands of Eriochloa borumensies Hack., a phosphoenolpyruvate carboxykinase type C4-species. Planta 133, 135–144Google Scholar
  25. Schiff, J.A., Epstein, H.T. (1968) The continuity of the chloroplast in Euglena. In: The biology of Euglena, Buetow, D.E., ed. Academic Press, New York-London 2, 285–333Google Scholar
  26. Wellburn, F.A.M., Wellburn, A.R. (1979) Conjoined mitochondria and plastids in the barley mutant “Albostrians”. Planta 147, 178–179Google Scholar
  27. Wildman, S.G., Jope, C., Atchinson, B.A. (1974) Role of mitochondria in the origin of chloroplast starch grains. Plant Physiol. 54, 231–237Google Scholar
  28. Wolpert, J.S., Ernst-Fonberg, M.L. (1975) A multiple enzymes complex for CO2 fixation. Biochemistry 14, 1095–1102PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • R. Calvayrac
    • 1
  • D. Laval-Martin
    • 1
  • J. Briand
    • 1
  • J. Farineau
    • 2
  1. 1.Laboratoire des Membranes BiologiquesUniversité de Paris VIIParis
  2. 2.Service de Biophysique du Département de Biologie-Commissariat à l'Energie AtomiqueC.E.N. SaclayGif-sur-YvetteFrance

Personalised recommendations