, Volume 73, Issue 3, pp 478–480 | Cite as

The relationship between fecundity and adult body weight in Homeotherms

  • D. Allainé
  • D. Pontier
  • J. M. Gaillard
  • J. D. Lebreton
  • J. Trouvilliez
  • J. Clobert
Short Communication


Although most life history traits in birds and mammals show an allometric relationship with body weight (Brody 1945; Lack 1968; Peters 1983; Calder 1984), such studies have failed to show a clear relationship for the components of fecundity: litter size and number of litters per year. By using a functional definition of the fecundity as the product of the number of litters per year with litter size, however we find an allometric relationship with allometric exponents of-0.15 in birds and-0.22 in mammals. the observed value of the allometric exponent for each order is discussed with regard to the theoretical value expected for variables dependent on time according to Lindstedt and Calder (Lindstedt and Calder 1981; Lindstedt et al. 1986). This has direct implications for investigation of demographic strategies.

Key words

Body Size Fecundity Homeotherms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brody S (1945) Bioenergetics and Growth. Reinhold New YorkGoogle Scholar
  2. Calder III WA (1983) Ecological scaling: mammals and birds. Ann Rev Ecol Syst 14:213–230Google Scholar
  3. Calder III WA (1984) Size, function and life history. Havard University Press, Massachussets USAGoogle Scholar
  4. Clutton-Brock TH, Harvey PH (1984) Comparative approaches to investigating adaptation. In: Davis NB, Krebs JR (eds.) Behavioral Ecology: an Evolutionary Approach. 2nd ed. Blackwell, Oxford U.K., pp 7–29Google Scholar
  5. Harvey PH, Benett PM (1983) Brain size, ecology and life history patterns. Nature 306:314–315Google Scholar
  6. Harvey PH, Clutton-Brock TH (1985) Life history variation in primates. Evolution 39 (3):559–581Google Scholar
  7. Jouventin P, Mougin JL (1981) Les stratégies adaptatives des oiseaux de mer. Terre et Vie, 35:217–273Google Scholar
  8. Lack D (1968) Ecological Adaptations for Breeding in Birds. Western Printing Services Ltd, Bristol, p 409Google Scholar
  9. Lebreton JD, Allaine D, Clobert J, Gaillard JM, Pontier D, Trouvilliez J (1987) Comparative bird demography: methods, data, and preliminary results. Acta Ornithologica (in press)Google Scholar
  10. Lindstedt SL, Calder WA (1981) Body size, physiological time, and longevity of homeothermic animals. The Quarterly Review of Biology 56 (1):1–16Google Scholar
  11. Lindstedt SL, Miller BJ, Buskirk SW (1986) Home range, time, and body size in mammals. Ecology 67(2):413–418Google Scholar
  12. Martin RD (1981) Relative brain size and basal metabolic rate in terrestrial vertebrates. Nature 293:57–60Google Scholar
  13. Martin RD, Harvey PH (1985) Brain size allometry. Ontogeny and phylogeny. In: Jungers WL (ed.) Size and Scaling in Primate Biology. Adv in Primatology, Plenum Press, pp 147–173Google Scholar
  14. Martin RD, Mac Larnon M (1985) Gestation period, neonatal size and maternal investment in placental mammals. Nature 313:220–223Google Scholar
  15. Millar JS (1977) Adaptive features of mammaliam reproduction. Evolution 31:370–386Google Scholar
  16. Millar JS (1984) The role of design constraints in the evolution of mammalian reproductive rates. Acta Zool Fennica 171:133–136Google Scholar
  17. Padley D (1985) Do the life history parameters of passerines scale to metabolic rate independently of body mass? Oikos 45:285–286Google Scholar
  18. Peters RH (1983) The ecological implications of body size. Cambridge University PressGoogle Scholar
  19. Sacher GA, Staffeldt EF (1974) Relation of gestation time to brain weight for placental mammals. Amer. Natur. 108:593–616Google Scholar
  20. Saether BE (1987) The influence of body weight on the covariation between reproductive traits in European birds. Oikos 48:79–88Google Scholar
  21. Sterns SC (1976) Life-history tactics: a review of the ideas. Quart Rev Biol 51:3–47CrossRefPubMedGoogle Scholar
  22. Stearns SC (1977) The evolution of life history traits: a critic of the theory and a review of the data. Ann Rev Ecol Syst 8:145–171Google Scholar
  23. Stearns SC (1983) The influence of size and phylogeny on patterns of covariation among life-history traits in the mammals. Oikos 41:173–187Google Scholar
  24. Thompson SD (1987) Body size, duration of parental care, and the intrinsic rate of natural increase in eutherian and metatherian mammals. Oecologia (Berlin) 71:201–209Google Scholar
  25. Tuomi J (1980) Mammalian reproductive strategies: a generalized relation of litter size to body size. Oecologia (Berlin) 45:39–44Google Scholar
  26. Weir BJ, Rowlands IW (1973) Reproductive strategies of mammals. Ann Rev Ecol Syst 4:139–163Google Scholar
  27. Western D (1979) Size, life history and ecology in mammals. Afr J Ecol 17:185–204Google Scholar
  28. Western D, Ssemakula J (1982) Life history patterns in birds and mammals and their evolutionary interpretation. Oecologia (Berlin) 54:281–290Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • D. Allainé
    • 1
  • D. Pontier
    • 1
  • J. M. Gaillard
    • 1
  • J. D. Lebreton
    • 2
  • J. Trouvilliez
    • 1
  • J. Clobert
    • 3
  1. 1.Laboratoire de BiométrieUniversité Cl. Bernard Lyon IVilleurbanne CedexFrance
  2. 2.C.E.P.E.-C.N.R.S.Montpellier CedexFrance
  3. 3.Laboratoire d'EcologieE.N.S.Paris Cedex 05France

Personalised recommendations