Advertisement

Planta

, Volume 102, Issue 2, pp 140–151 | Cite as

Effects of light quality on apical dominance in Xanthium strumarium and the associated changes in endogenous levels of abscisic acid and cytokinins

  • D. J. Tucker
  • T. A. Mansfield
Article

Summary

Apical dominance in Xanthium strumarium was influenced by the quality of illumination received at the end of the photoperiod. The involvement of the red/far-red regions of the spectrum was apparent. The persistence of the effects was partially dependent on the age of the individual buds concerned. Plants receiving 30 minutes of illumination from tungsten lamps after a 16-hour photoperiod from fluorescent tubes failed to branch, whereas plants given an identical photoperiod, both in terms of day-length and photosynthetically available light energy, but lacking the far-red from tungsten lamps, branched profusely.

The influence of the spectral distribution of illumination on the levels of cytokinins and abseisic acid in the plant, and the correlation with the degree of branching, is presented and discussed. The cytokinin content was much higher in inhibited than released buds. The cytokinins present were probably not able to particinate in bud growth because of an accumulation of inhibitors resembling abscisic acid. The concentration of the inhibitors in inhibited buds was 50 to 250 times that occurring in all other plant parts examined.

Keywords

Tungsten Abscisic Acid Plant Part Light Energy Xanthium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arney, S. E., Mitchell, D. L.: The effect of abscisic acid on stem elongation and correlative inhibition. New Phytologist 68, 1001–1015 (1969)Google Scholar
  2. Bonde, E. K.: Growth inhibitors and auxin in leaves of cocklebur. Physiol. Plantarum (Cph.) 6, 234–239 (1953).Google Scholar
  3. — Khudairi, A. K.: Further experiments with a growth inhibitor extracted from Xanthium leaves. Physiol. Plantarum (Cph.) 7 66–71 (1954).Google Scholar
  4. Borthwick, H. A., Hendricks, S. B., Parker, M. W.: The reaction controlling floral initiation. Proc. nat. Acad. Sci. (Wash.) 38, 929–934 (1952).Google Scholar
  5. Brian, P. W., Hemming, H. G., Lowe, D.: The effect of gibberellic acid on shoot growth of cupid sweet peas. Physiol. Plantarum (Cph.) 12, 15–29 (1959).Google Scholar
  6. Dörffling, K.: Weitere Untersuchungen über korrelative Knospenhemmung. Anwendung zweier Biotests mit Knospen bei der papierchromatographischen Untersuchung von Extracten aus Pisum-Pflanzen. Planta (Berl.) 70, 257–274 (1966).Google Scholar
  7. Fletcher, R. A., Zalik, S.: Effect of light quality on growth and free indoleacetic acid content in Phaseolus vulgaris. Plant Physiol. 39, 328–331 (1964).Google Scholar
  8. Geissman, T. A.: The structure of xanthinin. J. org. Chem. 27, 2692 (1962).Google Scholar
  9. — Deuel, P. G.: Xanthinin: a monocarboxylic sesquiterpenoid lactone. Chemy Ind. (Lond.) 11, 328 (1957).Google Scholar
  10. —— Bonde, E. K., Addicott, F. A.: Xanthinin: a plant growth regulating compund from Xanthium pennsylvanicum. J. Amer. chem. Soc. 76, 685–687 (1954).Google Scholar
  11. Hillman, J.: The hormonal regulation of bud outgrowth in Phaseolus vulgaris L. Planta (Berl.) 90, 222–229 (1970).Google Scholar
  12. Jacobs, W. P., Case, D. B., Scott, T. K.: Auxin/gibberellin interaction in apical dominance Plant Physiol. 42, 1329–1333 (1967).Google Scholar
  13. Kasperbauer, M. J.: Spectral distribution of light in a tobacco canopy and effects of end of day light quality on growth and development. Plant Physiol. 47, 775–778 (1971).Google Scholar
  14. Kato, J.: Studies on the physiological effect of gibberellin. II. On the interaction of gibberellin, with auxins and growth inhibitors. Physiol. Plantarum (Cph.) 11, 10–15 (1958).Google Scholar
  15. Kende H.: Preservation of chlorophyll in leaf sections by substances obtained from root exudates. Science, N.Y. 145, 1066–1067 (1964).Google Scholar
  16. Khan, A. A.: Isolation and characteristics of inhibitors, from Xanthium and their relation to photomorphogenesis. Ph. D. Dissertation, University of Chicago (1963).Google Scholar
  17. Letham, D. S.: Chemistry and physiology of kinetin-like compunds. Ann. Rev. Plant Physiol. 18, 349–364 (1967).Google Scholar
  18. — Williams, M. W.: Regulators of cell division in plant tissues. VIII. The cytokinins of the apple fruit. Physiol. Plantarum (Cph.) 22, 925–936 (1969).Google Scholar
  19. Little, J. E., Murray, W. F., Johnstone, D. B.: Xanthatin: an antimicrobial agent from Xanthium pennsylvanicum. Arch. Biochem. 27, 247–254 (1950).Google Scholar
  20. Lockhart, J. A.: Physiological studies on light sensitive, stem growth. Planta (Berl.) 62, 97–115 (1964).Google Scholar
  21. McIlrath, W. J., Bogorad, L.: The control of axillary bud growth in Xanthium. Plant Physiol. (Suppl.) 35, 19–20 (1960).Google Scholar
  22. Meijer, G.: The influence of light quality on the flowering response of Salvia occidentalis. Acta bot. neerl. 6, 395–406 (1957).Google Scholar
  23. Miller, C. O.: Kinetin and kinetin-like compounds Mod. Methods Plant Analysis 6, 194–202 (1963).Google Scholar
  24. Mizrahi, Y., Blumenfeld, A., Richmond, A. E.: Abscisic acid and transpiration in leaves in relation to osmotic root stress. Plant Physiol. 46, 169–171 (1970).Google Scholar
  25. Nakamura, E.: Studies on the branching of Pisum sativum L. Special report of the laboratory of horticulture, Shiga Agricultural College, Japan (1965).Google Scholar
  26. Phillips, I. D. J.: Apical dominance In: Physiology of plant growth and development, ed. M. B. Wilkins. London: McGraw-Hill 1969.Google Scholar
  27. —: Factors influencing the distribution of growth between stem and axillary buds in decapitated bean plants. J. exp. Bot. 22, 465–471 (1971).Google Scholar
  28. Reid, D. H., Clements, J. B., Carr, D. J.: Red light induction of gibberellin synthesis in leaves. Nature (Lond.) 217, 580–582 (1968).Google Scholar
  29. Sachs, T., Thimann, K. V.: Release of lateral buds from apical dominance. Nature (Lond.) 201, 939–940 (1964).Google Scholar
  30. ——: The role of auxins and cytokinins in the release of buds from dominance. Amer. J. Bot. 54, 136–144 (1967).Google Scholar
  31. Salisbury, F. B.: Xanthium strumarium L., In: The induction of flowering, ed. L. T. Evans. South Melbourne: Macmillan of Australia, 1969.Google Scholar
  32. Seckbach, J.: Studies on the control of axillary buds of Xanthium pennsylvanicum and on the occurrence and properties of xanthinin deacylase. Ph. D. Dissertation, University of Chicago (1965).Google Scholar
  33. Shein, T., Jackson, D. I.: Hormone interaction in apical dominance in Phaseolus vulgaris L. Ann. Bot. 35, 555–564 (1971).Google Scholar
  34. Thimann, K. V., Skoog, F.: Studies on the growth hormone of plants. III. Proc. nat. Acad. Sci. (Wash.) 19, 714–716 (1933).Google Scholar
  35. Tucker, D. J., Mansfield, T. A.: A simple bioassay for detecting “antitranspirant” activity of naturally occurring compounds such as abscisic acid. Planta (Berl.) 98, 157–163 (1971).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • D. J. Tucker
    • 1
  • T. A. Mansfield
    • 1
  1. 1.Department of Biological SciencesUniversity of LancasterUK

Personalised recommendations