Advertisement

Current Genetics

, Volume 11, Issue 6–7, pp 483–490 | Cite as

Gene-protein assignments within the yeast Yarrowia lipolytica dsRNA viral genome

  • M. El-Sherbeini
  • K. A. Bostia
  • J. Levitr
  • Diane J. Mitchel
Original Articles

Summary

Some strains of the yeast Yarrowia lipolytica possess virus-like particles (VLPs) which encapsidate a double-stranded RNA (dsRNA) genome designated Ly. We report here that these VLPs have two associated polypeptides of molecular weights 83 kd (VLy-P1) and 77 kd (VLy-P2). Denatured Ly-dsRNA was used to program a cell-free rabbit reticulocyte translation system, resulting in the appearance of four major products, viz. Ly-P1 (83 kd); Ly-P2 (77 kd); Ly-P3 (74 kd) and Ly-P4 (68 kd). The in vivo viral-associated protein VLy-P1 co-migrated on SDS-polyacrylamide gels with the in vitro product Ly-P1 and, similarly, VLy-P2 co-migrated with Ly-P2. Peptide mapping data confirm the identity of the in vivo products (VLy-P1 and VLy-P2) and their in vitro counterparts. The conclusion made is that VLy-P1 and VLyP2 are almost identical primary translation products of the Ly genome, derived from a single or multiple species of Ly-dsRNA. RNA blot hybridizations using L1A M1 and separately, L2A M2 probes prepared from appropriate K1 and K2 Saccharomyces cerevisiae killer strains, failed to show any detectable homology to Ly-dsRNA, substantiating the uniqueness of the Ly genome with respect to the K1 and K2 S. cerevisiae dsRNA killer systems.

Key words

Double-stranded RNA (dsRNA) Yarrowia lipolytica Saccharomyces cerevisiae Virus-like particles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barlow JJ, Mathias PA, Williamson R, Gammait BD (1963) Biochem Biophys Res Comm 13:61–66PubMedGoogle Scholar
  2. Bevan EA, Herring AJ, Mitchell DJ (1973) Nature 24S: 81–86Google Scholar
  3. Bostian KA, Sturgeon S, Tipper DJ (1980) J Bacteriol 143:463–470PubMedGoogle Scholar
  4. Bostian KA, Burn VE, Jayachandran, Tipper DJ (1983a) Nucleic Acids Res 11:1077–1079PubMedGoogle Scholar
  5. Bostian KA, Lemire JM, Halvorson HO (1983b) Mol Cell Biol 3:839–853PubMedGoogle Scholar
  6. Bostian KA, Bussey H, Elliot Q, Burn V, Smith A, Tipper DJ (1984) Cell 36:741–751CrossRefPubMedGoogle Scholar
  7. Bussey H, Skipper N (1975) J Bacteriol 124:476–483PubMedGoogle Scholar
  8. Cleveland DW, Fisher SG, Kirschner MW, Laemli UK (1977) J Biol Chem 252:1102–1106PubMedGoogle Scholar
  9. EI-Sherbeini M, Bevan EA, Mitchell DJ (1983) Curr Genet 7:63–68Google Scholar
  10. El-Sherbeini M, Tipper DJ, Mitchell DJ, Bostian KA (1984) Mol Cell Biol 4:2818–2827PubMedGoogle Scholar
  11. Field LJ, Bobek LA, Brennan VE, Reilly JD, Bruenn JA (1982) Cell 31:193–200CrossRefPubMedGoogle Scholar
  12. Franklin RM (1966) Proc Natl Acad Sci USA 55:1504–1511PubMedGoogle Scholar
  13. Groves DP, Clare JJ, Oliver SG (1983) Curr Genet 7: 185–190Google Scholar
  14. Hankin L, Puhalla JE (1971) Phytopathology 61:50–53Google Scholar
  15. Hopper JE, Bostian KA, Rowe LB, Tipper DJ (1977) J Biol Chem 252:9010–9017PubMedGoogle Scholar
  16. Jewers RJ, Bevan EA, Mitchell DJ (1982) Abst 11th Int Cong Yeast Genet Mol Biol, p 49Google Scholar
  17. Jewers RJ, El-Sherbeini M, Mountain HA, Bostian KA, Bevan EA, Mitchell DJ (1983) Heredity 52:458Google Scholar
  18. Kandel JS, Stern TA (1979) Antimicrobiol Agents Chemother 15:568–571Google Scholar
  19. Makower M, Bevan EA (1963) Proc Int Cogr Genet xi 1:202Google Scholar
  20. Maule AP, Thomas PD (1973) J Inst Brew 79:137–141Google Scholar
  21. Merril CR, Switzer RC, Van Keuren ML (1979) Proc Natl Acad Sci USA 76:4335–4339PubMedGoogle Scholar
  22. Mitchell DJ (1974) PhD thesis, University of LondonGoogle Scholar
  23. Middelbeek EJ, Hermans JMH, Stumm C (1980) Antonie van Leeuwenhoek J Microbiol Serol 45:437–450Google Scholar
  24. Naumov GI, Naumova TI (1973) Genetika 9:140–145PubMedGoogle Scholar
  25. Pelham HRB, Jackson RJ (1976) Eur J Biochem 67:247–256PubMedGoogle Scholar
  26. Phillskrik G, Young TW (1975) Antonie van Leeuwenhoek J Microbiol Serol 41:147–151Google Scholar
  27. Puhalla JE (1968) Genetics 60:461–474PubMedGoogle Scholar
  28. Rogers D, Bevan AE (1978) J Gen Microbiol 105:199–202Google Scholar
  29. Sommer SS, Wickner RB (1982) Cell 31:429–441CrossRefPubMedGoogle Scholar
  30. Stumm CJ, Hermans M, Middelbeek EJ, Croes AF, deVries GJML (1977) Antonie van Leeuwenhoek J Microbiol Serol 43:125–128Google Scholar
  31. Thomas PS (1980) Proc Natl Acad Sci USA 77:5201–5205PubMedGoogle Scholar
  32. Treton BY, Le Dall M, Heslot H (1985) Curr Genet 9:279–284Google Scholar
  33. Vandekerckhove J, van Montagu M (1973) In: Neurath H, Hill R (eds) The Proteins, 3rd edn. 1:179–223Google Scholar
  34. Vodkin M, Fink G (1973) Proc Natl Acad Sci USA 70:1069–1072PubMedGoogle Scholar
  35. Weber K, Osborn M (1969) J Biol Chem 244:4406–4412PubMedGoogle Scholar
  36. Young TW, Yagiu M (1978) Antonie van Leeuwenhoek J Microbiol Serol 44:59–77Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • M. El-Sherbeini
    • 1
  • K. A. Bostia
    • 1
  • J. Levitr
    • 1
  • Diane J. Mitchel
    • 2
  1. 1.Section of Biochemistry, Division of Biology and MedicineBrown UniversityProvidenceUSA
  2. 2.School of Biological SciencesQueen Mary CollegeLondonUK

Personalised recommendations