Archive for History of Exact Sciences

, Volume 42, Issue 1, pp 71–89 | Cite as

Boltzmann's ergodic hypothesis

  • Jan von Plato
Article

Summary

Boltzmann's ergodic hypothesis is usually understood as the assumption that the trajectory of an isolated mechanical system runs through all states compatible with the total energy of the system. This understanding of Boltzmann stems from the Ehrenfests' review of the foundations of statistical mechanics in 1911. If Boltzmann's work is read with any attention, it becomes impossible to ascribe to him the claim that one single trajectory would fill the whole of state space. He admitted a continuous number of different possible mechanical trajectories. Ergodicity was formulated as the condition that only one integral of motion, the total energy, is preserved in time. The two reasons for this are external disturbing forces and collisions within the system. Boltzmann found it difficult to ascribe ergodic behavior to a single system where the theoretical dependence on initial conditions, though never observed, has to be admitted as possible. To circumvent the dependence, he invented the concept of a microcanonical ensemble.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boltzmann, L. (1866) Ueber die mechanische Bedeutung des zweiten Hauptsatzes der Wärmetheorie, as reprinted in his Wissenschaftliche Abhandlungen, vol. 1, pp. 9–33.Google Scholar
  2. Boltzmann, L. (1868a) Ueber die Integrale linearer Differentialgleichungen mit periodischen Koeffizienten, Ibid., vol. 1, pp. 43–48.Google Scholar
  3. Boltzmann, L. (1868b) Studien über das Gleichgewicht der lebendigen Kraft zwischen bewegten materiellen Punkten, Ibid., vol. 1, pp. 49–96.Google Scholar
  4. Boltzmann, L. (1868c) Lösung eines mechanischen Problems, Ibid., vol. 1, pp. 97–105.Google Scholar
  5. Boltzmann, L. (1871a) Ueber das Wärmegleichgewicht zwischen mehratomigen Gasmolekülen, Ibid., vol. 1, pp. 237–258.Google Scholar
  6. Boltzmann, L. (1871b) Einige allgemeine Sätze über Wärmegleichgewicht, Ibid., vol. 1, pp. 259–287.Google Scholar
  7. Boltzmann, L. (1872) Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen, Ibid., vol. 1, pp. 316–402.Google Scholar
  8. Boltzmann, L. (1875) Ueber das Wärmegleichgewicht von Gasen, auf welche äussere Kräfte wirken, Ibid., vol. 2, pp. 1–30.Google Scholar
  9. Boltzmann, L. (1877) Ueber die Beziehung zwischen dem zweiten Hauptsatze der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung respektive den Sätzen über das Wärmegleichgewicht, Ibid., vol. 2, pp. 164–223.Google Scholar
  10. Boltzmann, L. (1881) Referat über die Abhandlung von J. C. Maxwell “Ueber Boltzmanns Theorie betreffend die mittlere Verteilung der lebendigen Kraft in einem System materieller Punkte.” Ibid., vol. 2, pp. 582–595.Google Scholar
  11. Boltzmann, L. (1884) Ueber die Eigenschaften monozyklischer und damit verwandter Systeme, Ibid., vol. 3, pp. 122–152.Google Scholar
  12. Boltzmann, L. (1887) Ueber die mechanischen Analogien des zweiten Hauptsatzes der Thermodynamik, Ibid., vol. 3, pp. 258–271.Google Scholar
  13. Boltzmann, L. (1892) III. Teil der Studien über Gleichgewicht der lebendigen Kraft, Ibid., vol. 3, pp. 428–453.Google Scholar
  14. Boltzmann, L. (1896–8) Vorlesungen über Gastheorie, vols. 1 and 2, Barth, Leipzig.Google Scholar
  15. Borel, E. (1905) Remarques sur certaines questions de probabilité, Bulletin de la Société mathematique de France, vol. 33, pp. 123–128.Google Scholar
  16. Borel, E. (1906) Sur les principes de la théorie cinétique des gaz, Annales de l' Ecole Normale supérieure, vol. 23, pp. 9–32.Google Scholar
  17. Borel, E. (1913) La mécanique statistique et l'irréversibilité, Journal de Physique, vol. 3, pp. 189–196.Google Scholar
  18. Borel, E. (1914) Exposé français de l'article sur la Mécanique statistique (P. et T. Ehrenfest), Encyclopédie des Sciences Mathématiques, t. 4, vol. 1.Google Scholar
  19. Brush, S. (1971) Proof of the impossibility of ergodic systems: the 1913 papers of Rosenthal and Plancherel, Transport Theory and Statistical Physics, vol. 1, pp. 287–311.Google Scholar
  20. Brush, S. (1976) The Kind of Motion We Call Heat, 2 vols., North-Holland, Amsterdam.Google Scholar
  21. Ehrenfest, P. & Ehrenfest, T. (1911) Begriffliche Grundlagen der statistischen Auffassung in der Mechanik, Encyclopädie der mathematischen Wissenschaften, Band 4, Teil 32, Teubner, Leipzig.Google Scholar
  22. Gibbs, J. W. (1902) Elementary Principles in Statistical Mechanics, as reprinted by Dover, New York 1960.Google Scholar
  23. Grad, H. (1952) Statistical mechanics, thermodynamics and fluid dynamics of systems with an arbitrary number of integrals, Communications in Pure and Applied Mathematics, vol. 5, pp. 455–494.Google Scholar
  24. Maxwell, J. C. (1867) On the dynamical theory of gases, as republished in The Scientific Papers of James Clerk Maxwell, vol. 2, pp. 26–78.Google Scholar
  25. Maxwell, J. C. (1873) Does the progress of Physical Science tend to give any advantage to the opinion of Necessity (or Determinism) over that of the Contingency of Events and the Freedom of the Will? published in L. Campbell & W. Garnett, The Life of James Clerk Maxwell, pp. 434–444, London 1882.Google Scholar
  26. Maxwell, J. C. (1875) On the dynamical evidence of the molecular constitution of bodies, Scientific Papers, vol. 2, pp. 418–438.Google Scholar
  27. Maxwell, J. C. (1879) On Boltzmann's theorem on the average distribution of energy in a system of material points, Ibid., vol. 2, pp. 713–741.Google Scholar
  28. Nelson, E. (1987) Radically Elementary Probability Theory, Princeton University Press, Princeton.Google Scholar
  29. von Neumann, J. (1929) Beweis des Ergodensatzes und des H-Theorems in der neuen Mechanik, Zeitschrift für Physik, vol. 57, pp. 30–70.Google Scholar
  30. von Neumann, J. (1932a) A proof of the quasi-ergodic hypothesis, Proceedings of the National Academy of Sciences, vol. 18, pp. 70–82.Google Scholar
  31. von Neumann, J. (1932b) Zur Operatorenmethode in der klassischen Mechanik, Annals of Mathematics, vol. 33, pp. 587–642; with additions, ibid., pp. 789–791.Google Scholar
  32. Plancherel, M. (1913) Beweis der Unmöglichkeit ergodischer mechanischer Systeme, Annalen der Physik, vol. 42, pp. 1061–1063.Google Scholar
  33. von Plato, J. (1987) Probabilistic physics the classical way, in L. Krüger, G. Gigerenzer & M. Morgan (eds.) The Probabilistic Revolution, vol. 2, pp. 379–407, MIT Press, Cambridge.Google Scholar
  34. Poincaré, H. (1890) Sur le problème des trois corps et les équations de la dynamique, Acta mathematica, vol. 13, pp. 1–270.Google Scholar
  35. Poincaré, H. (1894) Sur la théorie cinétique des gaz, Revue générale des Sciences pures et appliquées, vol. 5, pp. 513–521. Page references are to Oeuvres de Henri Poincaré, vol. 10, pp. 246–263.Google Scholar
  36. Poincaré, H. (1896) Calcul des probabilités, Gauthier Villars, Paris. 2nd ed. 1912.Google Scholar
  37. Rosenthal, A. (1913) Beweis der Unmöglichkeit ergodischer Gassysteme, Annalen der Physik, vol. 42, pp. 796–806.Google Scholar
  38. Rosenthal, A. (1914) Aufbau der Gastheorie mit Hilfe der Quasiergodenhypothese, Annalen der Physik, vol. 43, pp. 894–904.Google Scholar
  39. Zermelo, E. (1900) Über die Anwendung der Wahrscheinlichkeitsrechnung auf dynamische Systeme, Physikalische Zeitschrift, vol. 1, pp. 317–320.Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Jan von Plato
    • 1
  1. 1.Academy of FinlandHelsinki

Personalised recommendations