Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Light beams and radiation patterns in random media

  • 27 Accesses

  • 3 Citations


The purpose of this paper is to apply a numerical technique in solving problems involving light beams in a random medium. The technique starts by generating numerically sample media with prescribed statistical properties. Rays are then traced in these sample media and the ray statistics are compiled. These statistics are utilized to find the mean square displacement and distribution of a beam. Problems on beam broadening and distortion of radiation patterns are considered. Fluctations in wave amplitude and phase are also investigated. When possible, the numerical results are compared with the analytical results and experimental results.

It seems that the numerical technique has a potential to solve a great variety of problems. This is because it does not have severe restrictive conditions as those imposed on the analytic formulation. For example the technique is equally applicable when the irregularities are anisotropic, or when the background medium is inhomogeneous, or when the background is anistropic, or when there exist background wind. Some of these are discussed.

This is a preview of subscription content, log in to check access.


  1. [1]

    Chernov, L. A., Wave Propagation in a Random Medium, McGraw-Hill, New York, 1960.

  2. [2]

    Keller, J. B., Proc. Symp. Appl. Math. 13 (1962) 227.

  3. [3]

    Bremmer, H., J. Research NBS, Radio Science 68D (1964) 967.

  4. [4]

    Bourret, R. C., Canad. J. Phys. 40 (1962) 782.

  5. [5]

    Frisch, U., Wave Propagation in Random Media, in Probabilistic Methods in Applied Mathematics, vd. 1. Ed. by A. T. Bharucha-Reid, Academic Press, New York, 1968.

  6. [6]

    Komisarov, V. M., Soviet Radiophysics 9 (1966) 193.

  7. [7]

    Gracheva, M. E. and A. S. Gurvich, Soviet Radiophysics 8 (1965) 511.

  8. [8]

    Gracheva, M. E., Soviet Radiophysics 10 (1967) 424.

  9. [9]

    Ochs, G. R., R. R. Bergman, and J. R. Snyder, J. Opt. Soc. Am. 59 (1969) 231.

  10. [10]

    Tatarski, V. I., Sov. Radiophysics 10 (1967) 23.

  11. [11]

    DeWolf, D. A., Radio Science 2 (1967) 1513.

  12. [12]

    Strohbehn, J. W., Proc. IEEE 56 (1968) 1301.

  13. [13]

    Lawrence, R. S. and J. W. Strohbehn, Proc. IEEE 58 (1970) 1523.

  14. [14]

    Youakim, M. Y., C. H. Liu, and K. C. Yeh, Appl. Sci. Res. 28 (1973) 223.

  15. [15]

    Youakim, M. Y., C. H. Liu, and K. C. Yeh, J. Computational Phys. 8 (1971) 382.

  16. [16]

    Ochs, G. R. and R. S. Lawrence, J. Opt. Soc. Am. 59 (1969) 226.

  17. [17]

    Tatarski, V. I., Wave Propagation in a Turbulent Medium, American Elsevier, N.Y., 1966.

  18. [18]

    Adams, R. N. and E. D. Denman, Wave Propagation and Turbulent Media, American Elsevier, N.Y., 1966.

  19. [19]

    Hochstim, A. R. and C. P. Martens, Proc. Symp. on Turbulence of Fluids and Plasmas, 18 (1968) 187.

  20. [20]

    Rusbridge, M. G., Plasma Phys. 10 (1968) 95.

  21. [21]

    Bouricius, G. M. B. and S. F. Clifford, J. Opt. Soc. Am. 60 (1970) 1484.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Youakim, M.Y., Liu, C.H. & Yeh, K.C. Light beams and radiation patterns in random media. Appl. Sci. Res. 29, 259–272 (1974). https://doi.org/10.1007/BF00384150

Download citation


  • Radiation
  • Analytic Formulation
  • Light Beam
  • Wave Amplitude
  • Numerical Technique