Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The extended boundary condition and thick axially symmetric antennas

Abstract

The extended boundary condition of Waterman is applied to axially symmetric antennas. Infinite sets of non-singular integral equations for the surface current density are obtained. The numerical solution of these equations is investigated. Several sets of basis functions are used for expanding the surface current and their rates of numerical convergence are compared. The numerical methods introduced here are more useful than other known techniques for antennas with length to maximum diameter ratios from about 0.25 to 25, and with maximum diameters of about two wavelengths. Detailed numerical results are presented for half-wave cylindrical dipoles with rounded corners of varying curvature and for end-loaded cylindrical dipoles. Some confirmatory experimental results are reported. Comparison is made with results previously reported in the literature.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Waterman, P. C., Proc. IEEE 53 (1965) 805.

  2. [2]

    Waterman, P. C., Alta Frequenza 38 (1968) 348 (numero speciale).

  3. [3]

    Waterman, P. C., Phys. Rev. D (3rd series) 3 (1971) 825.

  4. [4]

    Gavorun, N. N., Dokl. Akad. Nauk, SSSR 126 (1959) 49.

  5. [5]

    Gavorun, N. N., USSR Comp. Math. and Math. Phys. 1 (1961) 779.

  6. [6]

    King, R. W. P., Theory of linear antennas, Harvard University Press, Cambridge, Mass., 1956.

  7. [7]

    Harrington, R. F., Field computation by moment methods, Macmillan, New York, 1968.

  8. [8]

    Hurd, R. A., The antenna admittance problem, Laboratory for Electromagnetic Theory, Technical University of Denmark, Lyngby, 1969.

  9. [9]

    Bakhrakh, L. D., A. A. Pistol'kors and Ya. N. Fel'd, Radio Engng and Electron. Phys. 12 (1967) 1787.

  10. [10]

    Vasil'yev, Ya. N., Iz. VUZ, Radiofizika 2 (1959) 588.

  11. [11]

    Vasil'yev, Ya. N. and A. R. Seregina, Radiotekhnika i Electronika 8 (1963) 1972.

  12. [12]

    Einarsson, O., Trans. IEEE AP-14 (1966) 31.

  13. [13]

    Vasil'yev, Ya. N., G. D. Malushkov and A. A. Falunin, Soviet Phys. and Tech. Phys. 12 (1967) 303.

  14. [14]

    Ting, C. Y., Trans. IEEE AP-17 (1969) 715.

  15. [15]

    Mautz, J. R. and R. F. Harrington, Appl. Sci. Res. 20 (1969) 405.

  16. [16]

    Harrington, R. F. and J. R. Mautz, Trans. IEEE AP-19 (1971) 622, 629.

  17. [17]

    Kalafus, R. M., Trans. IEEE AP-19 (1971) 771.

  18. [18]

    Andrews, C. L., Trans. IEEE AP-16 (1968) 600.

  19. [19]

    Hansen, J. and T. Larsen, J. Research NBS 66D (1962) 205.

  20. [20]

    Collin, R. E. and F. J. Zucker, Antenna theory, McGraw-Hill, New York, 1969, Chapter 23.

  21. [21]

    Otto, D. V., Radio Science (new series) 2 (1967) 1031.

  22. [22]

    Lewin, L., Trans. IRE AP-7 (1959) 162.

  23. [23]

    Wu, T. T., J. Research NBS 67D (1963) 83.

  24. [24]

    Rama Rao, B., Proc. IEE 112 (1965) 259.

  25. [25]

    Galejs, J., Radio Science 68D (1964) 165.

  26. [26]

    Ross, G. F. and P. Fenster, Proc. IEEE Intl. PGAP Symp., Boston, Mass., 1968, pp. 249–252.

  27. [27]

    Andersen, J. B., Radio Science (new series) 3 (1968) 607.

  28. [28]

    Otto, D. V., Radio Science (new series) 3 (1968) 862.

  29. [29]

    Hönl, H., A. W. Maue and K. Westpfahl, Handbuch der Physik, Springer-Verlag, Berlin, 1961, Vol. 25, Chapter 1, p. 240.

  30. [30]

    Jordan, E. C. and K. G. Balmain, Electromagnetic Waves and radiating systems, 2nd edn, Prentice-Hall, Englewood Cliffs, New Jersey, 1968, Chapter 13.

  31. [31]

    Copley, L. G., J. Acoust. Soc. Am. 41 (1967) 807.

  32. [32]

    Schenck, H. A., J. Acoust. Soc. Am. 44 (1968) 41.

  33. [33]

    Fenlon, F. H., Proc. IEEE 57 (1969) 291.

  34. [34]

    Waterman, P. C., J. Acoust. Soc. Am. 45 (1969) 1417.

  35. [35]

    Bates, R. H. T., Proc. IEE 115 (1968) 1443.

  36. [36]

    Bates, R. H. T., Trans. IEEE MTT-17 (1969) 294.

  37. [37]

    Bates, R. H. T., Electron. Lett. 5 (1969) 654.

  38. [38]

    Ng, F. L. and R. H. T. Bates, Trans IEEE MTT-20 (1972).

  39. [39]

    Bates, R. H. T., Arch. Rational Mech. Anal. 38 (1970) 123.

  40. [40]

    Hunter, J. D. and R. H. T. Bates, J. Engng. Math. 4 (1970) 119.

  41. [41]

    Hunter, J. D. and R. H. T. Bates, Int. J. Electronics 32 (1972) 321.

  42. [42]

    Hunter, J. D., Can. J. Phys. 50 (1972) 139.

  43. [43]

    Hallen, E., Electromagnetic theory, Chapman and Hall, London, 1962.

  44. [44]

    Abramowitz, M. and I. A. Stegun, Handbook of Mathematical functions, Dover, New York, 1965, Chapters 8 and 10.

  45. [45]

    Vasil'yev, Ya. N., USSR Comp. Math. and Math. Phys. 5 (1965) 77.

  46. [46]

    Jones, D. S., The theory of electromagnetism, Macmillan, New York, 1964, §§ 1.10, 1.21, 1.27, 9.1–9.4.

  47. [47]

    Morse, P. M. and H. Feshbach, Methods of theoretical physics, McGraw-Hill, New York, 1953, pp. 928–931.

  48. [48]

    Jones, D. S., Philos. Trans. A247 (1955) 499.

  49. [49]

    Chang, D. C., Radio Science (New Series) 2 (1967) 1043.

  50. [50]

    Harrington, R. F., Time-harmonic electromagnetic fields, McGraw-Hill, New York, 1961, Chapter 5.

  51. [51]

    Montgomery, C. G., Technique of microwave measurements, McGraw-Hill, New York, 1947, Chapter 8.

  52. [52]

    Tew, M. D. and L. L. Tsai, Proc. IEEE 60 (1972) 1436.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bates, R.H.T., Wong, C.T. The extended boundary condition and thick axially symmetric antennas. Appl. Sci. Res. 29, 19–43 (1974). https://doi.org/10.1007/BF00384129

Download citation

Keywords

  • Boundary Condition
  • Integral Equation
  • Basis Function
  • Rounded
  • Maximum Diameter