Roux's archives of developmental biology

, Volume 198, Issue 6, pp 336–354 | Cite as

Genetic analysis of the wing vein pattern of Drosophila

  • F. J. Diaz-Benjumea
  • A. García-Bellido


Of the many mutations known to affect the wing vein pattern we have selected the most extreme in 29 genes for study. Their phenotype can be classified in two major classes: lack-of-veins and excess-of-veins, and in several internally coherent groups. The study of multiple mutant combinations, within groups and between groups, reveals several genetic operations at work in the generation of the vein pattern. The finding that some of these mutations also affect cell proliferation in characteristic ways has prompted a generative model of wing morphogenetic and pattern formation based on cell behaviour properties defined by the corresponding wild-type genes.

Key words

Pattern formation Morphogenetic operation Genetic interaction Wing vein 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akam M (1987) The molecular basis for metameric pattern in Drosophila embryo. Development 101:1–22Google Scholar
  2. Anderson DT (1972) The development of hemimetabolous insects. In: Counce SJ, Waddington CH (eds) Developmental systems: insects, vol 1. Academic Press, London New York, pp 95–163Google Scholar
  3. Bryant P (1970) Cell lineage relationships in the imaginai wing disc of Drosophila melanogaster. Dev Biol 22:398–411Google Scholar
  4. Busson D, Limbourg-Bouchon B, Mariol MC, Preat T, Laumour-Isnard C (1988) Genetic analysis of viable and lethal fused mutants of Drosophila melanogaster. Roux's Arch Dev Biol 197:221–230Google Scholar
  5. Canal I (1988) Análisis genético del metamerismo en el sistema nervioso embrionario de Drosophila melanogaster. Ph.D. Dissertation. Universidad Autónoma de Madrid, SpainGoogle Scholar
  6. de la Concha A, Dietrich U, Weigel D, Campos-Ortega JA (1988) Functional interactions of neurogenic genes of Drosophila melanogaster. Genetics 118:499–508Google Scholar
  7. Craymer L (1980) Ach: Achaetous. Drosophila Information Service 55:197Google Scholar
  8. Fausto-Sterling A (1978) Pattern formation in the wing veins of the fused mutant (Drosophila melanogaster). Dev Biol 63:358–369Google Scholar
  9. Ferris GF (1965) External morphology of the adult. In: Demerec MW (ed) Biology of Drosophila. Hafner, London New York, pp 368–418Google Scholar
  10. García Alonso L, García-Bellido A (1986) Genetic analysis of Hairy-wing mutations. Roux's Arch Dev Biol 195:259–264Google Scholar
  11. García Alonso L, García-Bellido A (1988) Extramacrochaete, a trans-acting gene of the achaete-scute complex of Drosophila involved in cell communication. Roux's Arch Dev Biol 197:328–338Google Scholar
  12. García-Bellido A (1977) Inductive mechanisms in the process of the wing vein formation in Drosophila. Roux's Arch Dev Biol 182:93–106Google Scholar
  13. García-Bellido A (1981) From the gene to the pattern: chaeta differentiation. In: Lloyd CW, Rees DA (eds) Cellular controls in differentiation. Academic Press, New York, pp 281–304Google Scholar
  14. García-Bellido A, Merriam JR (1971a) Parameters of the wing imaginai disc development of Drosophila melanogaster. Dev Biol 24:61–87PubMedGoogle Scholar
  15. García-Bellido A, Merriam JR (1971b) Genetic analysis of cell heredity in imaginal discs of Drosophila melanogaster. Proc Natl Acad Sci USA 68:2222–2226Google Scholar
  16. Garcá-Bellido A, Santamaría P (1972) Developmental analysis of the wing disc in the mutant engrailed of Drosophila melanogaster. Genetics 72:87–104Google Scholar
  17. Garcá-Bellido A, Santamaría P (1978) Developmental analysis of the achaete-scute system of Drosophila melanogaster. Genetics 88:469–486Google Scholar
  18. Ghysen A, Dambly-Chaudiere C (1988) From DNA to form: the achaete-scute complex. Genes Dev 2:495–501PubMedGoogle Scholar
  19. Hadorn E (1948) Gene action in growth and differentiation of lethal mutant of Drosophila. Symp Soc Exp Biol 2:177–195Google Scholar
  20. Ingham PW (1988) The molecular genetics of embryonic pattern formation in Drosophila. Nature 335:25–34Google Scholar
  21. Irish VF, Gelbart WM (1987) The decapentaplegic gene is required for dorsal-ventral pattering of the Drosophila embryo. Genes Dev 1:868–879Google Scholar
  22. Jürgen G, Wieschaus E, Nüsslein-Volhard C, Kluding H (1984) Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. II. Zygotic loci on the third chromosome. Roux's Arch Dev Biol 193:283–295Google Scholar
  23. Lewis EB (1951) Psedoallelism and gene evolution. Cold Spring Harbor Symp Quant Biol 16:159–174Google Scholar
  24. Lewis EB, Bacher F (1968) Method of feeding ethyl methanesulphonate (EMS) to Drosophila males. Drosophila Information Service 43:193Google Scholar
  25. Lindsley DL, Grell EH (1968) Genetic variations of Drosophila melanogaster. Carnegie Inst Wash Publ 627Google Scholar
  26. Martinez-Arias A (1985) The development of fused-embryos of Drosophila melanogaster. J Embryol Exp Morphol 87:99–114Google Scholar
  27. Mayer U, Nüsslein-Volhard C (1988) A group of genes required for pattern formation in the ventral ectoderm of the Drosophila embryo. Genes Dev 2:1496–1511Google Scholar
  28. Nüsslein-Volhard C, Wieschaus E (1980) Segmentation in Drosophila: mutations affecting segment number and polarity. Nature 287:795–801Google Scholar
  29. Nüsslein-Volhard C, Wieschaus E, Kluding H (1984) Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. I. Zygotic loci on the second chromosome. Roux's Arch Dev Biol 193:267–282Google Scholar
  30. Orenic T, Chidsey J, Holmgren R (1987) Cell and cubitus interruptus Dominant: two segment polarity genes on the fourth chromosome in Drosophila. Dev Biol 124:50–56Google Scholar
  31. Portin P (1975) Allelic negative complementation at the Abruptex locus of Drosophila melanogaster. Genetics 116:433–445Google Scholar
  32. Preiss A, Hartley DA, Artavanis-Tsakonas S (1988) The molecular genetic of Enhancer of split, a gene required for embryonic neural development in Drosophila. EMBO J 7:3917–3927Google Scholar
  33. Puro J (1982a) Drosophila Information Service 58:205Google Scholar
  34. Puro J (1982b) Drosophila Information Service 58:206Google Scholar
  35. Ruiz-Gomez M, Modolell J (1987) Deletion analysis of the achaetescute locus of Drosophila melanogaster. Genes Dev 1:1238–1246Google Scholar
  36. Schubiger M, Palka I (1987) Changing spatial patterns of DNA replication in the developing wing of Drosophila. Dev Biol 123:145–153Google Scholar
  37. Segal D, Gelbart WM (1985) shortvein, a new component of the decapentaplegic gene complex in Drosophila melanogaster. Genetics 109:119–143Google Scholar
  38. Snodgrass RE (1936) The principles of insect morphology. McGrawn-Hill, New YorkGoogle Scholar
  39. Spencer FA, Hoffmann FM, Gelbart WM (1982) Decapentaplegic: a gene complex affecting morphogenesis in Drosophila melanogaster. Cell 28:451–461Google Scholar
  40. Stern C (1954) Two or three bristles. Am Sci 42:213–247Google Scholar
  41. Szidonya J, Reuter G (1988) Cytogenetic analysis of the echinoid (ed), dumpy (dp) and clot (cl) region in Drosophila melanogaster. Genet Res 51:197–208Google Scholar
  42. Vässin H, Campos-Ortega JA (1987) Genetic analysis of Delta, a neurogenic gene of Drosophila melanogaster. Genetics 116:433–445Google Scholar
  43. Vässin H, Vielmetter J, Campos-Ortega JA (1985) Genetic interactions in early neurogenesis of Drosophila melanogaster. J Neurogenet 2:291–308Google Scholar
  44. Waddington CH (1940) The genetic control of wing development in Drosophila. J Genet 41:75–139Google Scholar
  45. Wharton KA, Johansen KM, Xu T, Artavanis-Tsakonas S (1985) Nucleotide sequence from the neurogenic locus Notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell 43:567–581Google Scholar
  46. Wieschaus E, Nüsslein-Volhard C (1986) Looking at embryos. In: Roberts DB (ed) Drosophila, a practical approach. IRL Press, Oxford Washington, pp 199–228Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • F. J. Diaz-Benjumea
    • 1
  • A. García-Bellido
    • 1
  1. 1.Centro de Biología Molecular, C.S.I.C.Universidad Autónoma de MadridMadridSpain

Personalised recommendations