Advertisement

Molecular and General Genetics MGG

, Volume 194, Issue 1–2, pp 265–274 | Cite as

Genetic analysis of the individual T-DNA genes of Agrobacterium tumefaciens; further evidence that two genes are involved in indole-3-acetic acid synthesis

  • D. Inzé
  • A. Follin
  • M. Van Lijsebettens
  • C. Simoens
  • C. Genetello
  • M. Van Montagu
  • J. Schell
Article

Summary

The T-DNA genes of Ti plasmids of Agrobacterium tumefaciens can induce tumorous growth on a wide range of dicotyledonous plants. We subcloned the individual onc genes of the pTiC58 T-DNA and reintroduced them in the T-region of the Ti plasmid gene vector pGV3850 (from which the onc genes had been removed (Zambryski et al. 1983)). These experiments were designed to analyze the contribution of each onc gene to the development of a tumor and have fulfilled two purposes. First, it was found that only the strains carrying gene 4 produced tumors without the aid of other T-DNA genes; in cell culture these tumors sprout shoots. Second, the shoot-forming phenotype of tumors induced by agrobacteria carrying Ti plasmids defective in either gene 1 or gene 2 can be restored to wildtype phenotype by simple coinfection with Agrobacterium strains whose Ti plasmids contain respectively only gene 2, or only gene 1 in their T-region. A parallel experiment demonstrated that the combined action of genes 1 and 2 is sufficient to induce tumor formation on tobacco plantlets.

The external addition of α-naphthalene acetic acid (NAA) restores to wild-type the phenotype of tumors induced by mutants in gene 1 or in gene 2. However, α-naphthalene acetamide can only restore to wild-type the phenotype of mutants in gene 1. These data indicate that the product of the T-DNA gene 2 participates in the conversion of α-naphthalene acetamide to a biologically active auxin, presumably NAA, and suggest that gene 1 codes for an enzyme involved in the synthesis of an indole-3-acetyl derivative.

Keywords

Agrobacterium Acetamide Gene Vector Agrobacterium Tumefaciens Parallel Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akiyoshi DE, Morris RO, Hinz R, Mischke PS, Kosuge T, Garfinkel DJ, Gordon MP, Nester EW (1983) Cytokinin/auxin balance in crown gall tumors is regulated by specific loci in the T-DNA. Proc Natl Acad Sci USA 80:407–411Google Scholar
  2. Amasino RM, Miller CO (1982) Hormonal control of tobacco crown gall tumor morphology. Plant Physiol 69:389–392Google Scholar
  3. Anand VK, Heberlein GT (1977) Crown gall tumorigenesis in potato tuber tissue. Am J Bot 64:153–158Google Scholar
  4. Bevan MW, Chilton M-D (1982) Multiple transcripts of T-DNA detected in nopaline crown gall tumors. J Mol Appl Genet 1:539–546PubMedGoogle Scholar
  5. Binns AN, Sciaky D, Wood HN (1982) Variation in hormone autonomy and regenerative potential of cells transformed by strain A66 of Agrobacterium tumefaciens. Cell 31:605–612PubMedGoogle Scholar
  6. Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucl Acids Res 7:1512–1523Google Scholar
  7. Bolivar F, Betlach M, Heynecker HL, Shine J, Rodriguez R, Boyer HW (1977) Construction and characterization of new cloning vehicles. I. Ampicillin-resistant derivatives of the plasmid pMB9. Gene 2:75–93CrossRefPubMedGoogle Scholar
  8. Boyer HW, Roulland-Dussoix D (1969) A complementation analysis of the restriction and modification of DNA in E. coli. J Mol Biol 41:459–472PubMedGoogle Scholar
  9. Chilton M-D, Drummond MH, Merlo DJ, Sciaky D, Montoya AL, Gordon MP, Nester EW (1977) Stable incroporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11:263–271PubMedGoogle Scholar
  10. Chilton M-D, Drummond MH, Merlo DJ, Sciaky D (1978) Highly conserved DNA of Ti-plasmids overlaps T-DNA, maintained in plant tumors. Nature (London) 275:147–149Google Scholar
  11. Chilton M-D, Saiki RK, Yadav N, Gordon MP, Quetier F (1980) T-DNA from Agrobacterium Ti plasmid is in the nuclear DNA fraction of crown gall tumor cells. Proc Natl Acad Sci USA 77:4060–4064Google Scholar
  12. Colson C, Glover SW, Symonds N, Stacey KA (1965) The location of genes for host controlled modification and restriction in Eschrichia coli K12. Genetics 52:1043–1050PubMedGoogle Scholar
  13. De Beuckeller M, Lemmers M, De Vos G, Willmitzer L, Van Montagu M, Schell J (1981) Further insight on the transferred-DNA of octopine crown gall. Mol Gen Genet 183:283–288PubMedGoogle Scholar
  14. De Cleene M, De Ley J (1976) The host range of crown-gall. Bot Rev 42:389–466Google Scholar
  15. Depicker A, Van Montagu M, Schell J (1978) Homologous DNA sequences in different Ti-plasmids are essential for oncogenicity. Nature (London) 275:150–153Google Scholar
  16. Depicker A, De Wilde M, De Vos G, De Vos R, Van Montagu M, Schell J (1980) Molecular cloning of overlapping segments of the nopaline Ti-plasmid pTiC58 as a means to restriction endonuclease mapping. Plasmid 3:193–211PubMedGoogle Scholar
  17. De Vos G, De Beuckeller M, Van Montagu M, Schell J (1981) Restriction endonuclease mapping of the octopine tumor inducting pTiAch5 of Agrobacterium tumefaciens. Plasmid 6:249–253PubMedGoogle Scholar
  18. Dhaese P, De Greve H, Decraemer H, Schell J, Van Montagu M (1979) Rapid mapping of transposon insertion and deletion mutations in the large Ti-plasmids of Agrobacterium tumefaciens. Nucl Acids Res 7:1837–1949PubMedGoogle Scholar
  19. Drummond MH, Gordon MP, Nester EW, Chilton M-D (1977) Foreign DNA of bacterial plasmid origin is transcribed in crown gall tumours. Nature (London) 269:535–536Google Scholar
  20. Engler G, Depicker A, Maenhaut R, Villarroel-Mandiola R, Van Montagu M, Schell J (1981) Physical mapping of DNA base sequence homologies between an octopine and a nopaline Tiplasmid of Agrobacterium tumefaciens. J Mol Biol 152:183–208PubMedGoogle Scholar
  21. Garfinkel DJ, Simpson RB, Ream LW, White FF, Gordon MP, Nester EW (1981) Genetic analysis of crown gall: fine structure map of the T-DNA by site-directed mutagenesis. Cell 27:143–153PubMedGoogle Scholar
  22. Gelvin SB, Thomashow MF, McPherson JC, Gordon MP, Nester EW (1982) Sizes and map positions of several plasmid-DNA-encoded transcripts in octopine-type crown gall tumors. Proc Natl Acad Sci USA 79:76–80PubMedGoogle Scholar
  23. Gurley WB, Kemp JD, Albert MJ, Sutton DW, Callis J (1979) Transcription of Ti plasmid-derived sequences in three octopine-type crown gall tumor lines. Proc Natl Acad Sci USA 76:2828–2832PubMedGoogle Scholar
  24. Guyon P, Chilton M-D, Petit A, Tempé J (1980) Agropine in “null type” crown gall tumors: evidence for the generality of the opine concept. Proc Natl Acad Sci USA 77:2693–2697Google Scholar
  25. Hamilton RH, Fall MZ (1971) The loss of tumor initiating ability in Agrobacterium tumefaciens by incubation at high temperature. Experientia 27:229–230PubMedGoogle Scholar
  26. Holsters M, Silva B, Van Vliet F, Genetello C, De Block M, Dhaese P, Depicker A, Inzé D, Engler G, Villarroel R, Van Montagu M, Schell J (1980) The functional organization of the nopaline A. tumefaciens plasmid pTiC58. Plasmid 3:212–230PubMedGoogle Scholar
  27. Joos H, Inzé D, Caplan A, Sormann M, Van Montagu M, Schell J (1983) Genetic analysis of T-DNA transcripts in nopaline crown galls. Cell 32:1057–1067CrossRefGoogle Scholar
  28. Klapwijk PM, Van Beelen P, SchiIperoort RA (1979) Isolation of a recombinant deficient Agrobacterium tumefaciens mutant. Mol Gen Genet 173:171–175PubMedGoogle Scholar
  29. Kosuge T, Heskett MG, Wilson EE (1968) Microbial synthesis and degradation of indole-3-acetic acid. I. The conversion of L-tryptophan. J Biol Chem 241:3738–3744Google Scholar
  30. Leemans J, Shaw C, Deblaere R, De Greve H, Hernalsteens JP, Maes M, Van Montagu M, Schell J (1981) Site-specific mutagenesis of Agrobacterium Ti plasmids and transfer of genes to plant cells. J Mol Appl Genet 1:149–164PubMedGoogle Scholar
  31. Leemans J, Deblaere R, Willmitzer L, De Greve H, Hernalsteens JP, Van Montagu M, Schell J (1982) Genetic identification of functions of TL-DNA transcripts in octopine crown galls. EMBO J 1:147–152Google Scholar
  32. Lemmers M, De Beuckeleer M, Holsters M, Zambryski P, Depicker A, Hernalsteens JP, Van Montagu M, Schell J (1980) Internal organization, boundaries and integration of Ti-plasmid DNA in nopaline crown gall tumours. J Mol Biol 144:353–376PubMedGoogle Scholar
  33. Letham OS, Goodwin PB, Higgins TJV (1978) Phytohormones and the development of higher plants, vol I and II. Elsevier/ North-Holland Biomedical Press, AmsterdamGoogle Scholar
  34. Linsmaier EM, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18:100–127Google Scholar
  35. Liu ST, Kado CI (1979) Indoel acetic acid production: a plasmid function of Agrobacterium tumefaciens C58 Biochem Biophys Res Comm 20:171–178Google Scholar
  36. Maniatis T, Fritsch EF, Sambrook J (1982) Mocular cloning, a laboratory manual. Cold Spring Harbor Laboratory, New York, pp 545Google Scholar
  37. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, New York, pp 466Google Scholar
  38. Morris RO, Akiyoshi DE, MacDonald EMS, Morris JW, Regier DA, Zaerr JB (1982) Cytokinin metabolism in relation to tumor induction by Agrobacterium tumefaciens. In: Wareing PF (ed) Plant growth substances 1982. Academic Press, London, pp 175–183Google Scholar
  39. Ooms G, Hooykaas PJ, Moleman G, Schilperoort RA (1981) Crown gall plant tumors of abnormal morphology, induced by Agrobacterium tumefaciens carrying mutated octopine Ti plasmids; analysis of T-DNA functions. Gene 14:33–50CrossRefGoogle Scholar
  40. Ooms G, Molendijk L, Schilperoort RA (1982) Double infection of tobacco plants by two complementing octopine T-region mutants of Agrobacterium tumefaciens. Plant Mol Biol 1:217–226Google Scholar
  41. Otten LA, Schilperoort RA (1978) A rapid microscale method for the detection of lysopine-and nopaline dehydrogenase activities. Biochim Biophys Acta 527:497–500PubMedGoogle Scholar
  42. Petit A, Delhaye S, Tempé J, Morel G (1970) Recherches sur les guanidines des tissus de crown gall. Mise en évidence d'une relation biochemique spécifique entre les souches d'Agrobacterium et les tumeurs qu'elles induisent. Physiol Vég 8:205–213Google Scholar
  43. Rao RN, Rogers SG (1979) Plasmid pKC7: a vector containing ten restriction endonuclease sites suitable for cloning DNA fragments. Gene 7:79–82CrossRefGoogle Scholar
  44. Schneider EA, Wightman F (1978) Auxines. In: Letham DS, Goodwin PB, Higgins TJV (eds) Phytohormones and related compounds. A comprehensive treatise, vol I. Elsevier/North-Holland, Amsterdam, pp 29–92Google Scholar
  45. Schröder G, Schröder J (1982) Hybridization selection and translation of T-DNA encoded mRNAs from octopine tumors. Mol Gen Genet 185:51–55Google Scholar
  46. Schröder G, Klipp W, Hillebrand A, Ehring R, Koncz C, Schröder J (1983) The conserved part of the T-region in Ti-plasmids expresses four proteins in bacteria. EMBO J 2:403–409PubMedGoogle Scholar
  47. Schröder G, Waffenschmidt S, Weiler EW, Schröder J (1984) The T-region of Ti plasmids codes for an enzyme synthesizing indole-3-acetic acid. Eur J Biochem, in pressGoogle Scholar
  48. Smith EF, Townsend CO (1907) A plant tumor óf bacterial origin. Science 25:671–673Google Scholar
  49. Stonier T (1962) Normal, abnormal, and pathological regeneration in Nicotiana. In: Rudnick D (ed) Regeneration (XXth Annual Symp Soc for the Study of Growth and Development). Ronald Press, New York, pp 85–115Google Scholar
  50. Thomashow MF, Nutter R, Montoya AL, Gordon MP, Nester EW (1980) Integration and organisation of Ti-plasmid se-quences in crown gall tumors. Cell 19:729–739PubMedGoogle Scholar
  51. Van Haute E, Joos H, Maes M, Warren G, Van Montagu M, Schell J (1983) Intergeneric transfer and exchange recombination of restriction fragments cloned in pBR322: a novel strategy for the reversed genetics of the Ti plasmids of Agrobacterium tumefaciens. EMBO J 2:411–417PubMedGoogle Scholar
  52. Van Larebeke N, Engler G, Holsters M, Van den Elsacker S, Zaenen I, Schilperoort RA, Schell J (1974) Large plasmid in Agrobacterium tumefaciens essential for crown gall-inducing ability. Nature (London) 252:169–170Google Scholar
  53. Van Larebeke N, Genetello C, Hernalsteens JP, Depicker A, Zaenen I, Messens E, Van Montagu M, Schell J (1977) Transfer of Ti plasmids between Agrobacterium strains by mobilization with the conjugative plasmid RP4. Mol Gen Genet 152:119–124CrossRefGoogle Scholar
  54. Vervliet G, Holsters M, Teuchy H, Van Montagu M, Schell J (1975) Characterization of different plaque-forming and defective temperate phages in Agrobacterium strains. J Gen Virol 26:33–48PubMedGoogle Scholar
  55. Willmitzer L, De Beuckeleer M, Lemmers M, Van Montagu M, Schell J (1980) DNA from Ti-plasmid is present in the nucleus and absent from plastids of plant crown-gall cells. Nature (London) 287:359–361Google Scholar
  56. Willmitzer L, Otten L, Simons G, Schmalenbach W, Schröder J, Schröder G, Van Montagu M, De Vos G, Schell J (1981) Nuclear and polysomal transcripts of T-DNA in octopine crown gall suspension and callus cultures. Mol Gen Genet 182:255–262PubMedGoogle Scholar
  57. Willmitzer L, Simons G, Schell J (1982) The TL-DNA in octopine crown gall tumours coles for seven well-defined polyadenylated transcripts. EMBO J 1:139–146Google Scholar
  58. Willmitzer L, Dhaese P, Schreier PH, Schmalenbach W, Van Montagu M, Schell J (1983) Size, location, and polarity of T-DNA-encoded transcripts in nopaline crown gall tumors; evidence for common transcripts present in both octopine and nopaline tumors. Cell 32:1045–1056PubMedGoogle Scholar
  59. Zaenen I, Van Larebeke N, Teuchy H, Van Montagu M, Schell J (1974) Supercoiled circular DNA in crown gall inducing Agrobacterium strains. J Mol Biol 86:109–127PubMedGoogle Scholar
  60. Zambryski P, Joos H, Genetello C, Leemans J, Van Montagu M, Schell J (1983) Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J 2, 2143–2150Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • D. Inzé
    • 1
  • A. Follin
    • 1
  • M. Van Lijsebettens
    • 1
  • C. Simoens
    • 1
  • C. Genetello
    • 1
  • M. Van Montagu
    • 1
  • J. Schell
    • 1
    • 2
  1. 1.Laboratorium voor GeneticaRijksuniversiteit, GentGent(Belgium)
  2. 2.Max-Planck-Institut für ZüchtungsforschungKöln 30(F.R.G.)

Personalised recommendations