Archive for Rational Mechanics and Analysis

, Volume 131, Issue 3, pp 225–240 | Cite as

Geometrical aspects of stability theory for Hill's equations

  • Henk Broer
  • Mark Levi
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. Afsharnejad. Bifurcation geometry of Mathieu's equation. Indian J. Pure Appl. Math. 17 (1986), 1284–1308.Google Scholar
  2. 2.
    V. I. Arnold. Lectures on bifurcations in versal families. Russ. Math. Surv. 27 (1972), 54–123.Google Scholar
  3. 3.
    V. I. Arnold. Loss of stability of self-oscillation close to resonance and versal deformations of equivariant vector fields. Funct. Anal. Appl. 11 (1977), 85–92.Google Scholar
  4. 4.
    V. I. Arnold. Mathematical Methods of Classical Mechanics, Springer-Verlag, 1980.Google Scholar
  5. 5.
    V. I. Arnold. Geometrical Methods in the Theory of Ordinary Differential Equations. Springer-Verlag, 1983.Google Scholar
  6. 6.
    V. I. Arnold. Remarks on the perturbation theory for problems of Mathieu type. Russ. Math. Surv. 38 (1983), 215–233.Google Scholar
  7. 7.
    H. W. Broer & G. Vegter. Bifurcational aspects of parametric resonance. Dynamics Reported, New Series 1 (1992), 1–53.Google Scholar
  8. 8.
    I. M. Gelfand & V. B. Lidskii. On the structure of stability of linear canonical systems of differential equations with periodic coefficients. Amer. Math. Soc. Transl. (2) 8 (1958), 143–181.Google Scholar
  9. 9.
    J. Pöschel & E. Trubowitz. Inverse Spectral Theory. Academic Press, 1986.Google Scholar
  10. 10.
    M. Levi. Stability of the inverted pendulum — a topological explanation. SIAM Review 30 (1988), 639–644.Google Scholar
  11. 11.
    D. M. Levy & J. B. Keller. Instability intervals of Hill's equation. Comm. Pure Appl. Math. 16 (1963), 469–479.Google Scholar
  12. 12.
    J. Meixner & F. W. Schäfke. Mathieusche Funktionen und Sphäroidfunktionen. Springer-Verlag, 1954.Google Scholar
  13. 13.
    J. J. Stoker. Nonlinear Vibrations. Interscience, 1950.Google Scholar
  14. 14.
    Th. Bröcker & L. Lander. Differentiable Germs and Catastrophes. Cambridge University Press, 1976.Google Scholar
  15. 15.
    B. van der Pol & M. J. O. Strutt. On the stability of the solutions of Mathieu's equation. The London, Edinburgh and Dublin Phil. Mag. 7th Series 5 (1928), 18–38.Google Scholar
  16. 16.
    M. I. Weinstein & J. B. Keller. Hill's equation with a large potential. SIAM J. Appl. Math. 45 (1985), 954–958.Google Scholar
  17. 17.
    M. I. Weinstein & J. B. Keller. Asymptotic behavior of stability regions for Hill's equation. SIAM J. Appl. Math. 47 (1987), 941–958.Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Henk Broer
    • 1
    • 2
  • Mark Levi
    • 1
    • 2
  1. 1.Department of MathematicsUniversity of GroningenAV GroningenThe Netherlands
  2. 2.Department of Mathematical SciencesRensselaer Polytechnic InstituteTroy

Personalised recommendations