Advertisement

Contributions to Mineralogy and Petrology

, Volume 58, Issue 2, pp 181–201 | Cite as

Some subcalcic clinopyroxenites from Salt Lake Crater, Oahu, and their petrogenetic significance

  • J. F. G. Wilkinson
Article

Abstract

Some inclusions from Salt Lake Crater are essentially single-phase subcalcic clinopyroxenites whose original clinopyroxenes, prior to extensive unmixing, were tschermakitic subcalcic varieties with compositions close to Ca34Mg54Fe12. In addition to copious amounts of orthopyroxene, very minor garnet and spinel also were exsolved from the subcalcic clinopyroxenes.

The genesis of the garnet pyroxenite suite at Salt Lake Crater has been examined in terms of three models, namely: (i) cumulates from alkali basaltic magmas; (ii) fractional fusion of “basanitic” garnet clinopyroxenite; and (iii) anatexis of upper mantle lherzolites. Field, mineralogical, chemical and experimental data collectively favour model (iii) and indicate that the nodules are genetically unrelated to their nephelinitic hosts. The Salt Lake garnet pyroxenites can be closely equated with the garnet pyroxenites in magmatictype layers in certain alpine-type ultramafic massifs and they are also similar to many garnet pyroxenite xenoliths in alkaline volcanics from other localities.

Liquids produced by anhydrous partial melting of spinel Iherzolite at pressures of approximately 20 kb commonly have picritic chemistries. The crystallization behaviour of picritic liquids at elevated pressures (∼ 20 kb) indicates that the initial crystallization products may be either essentially single-phase subcalcic clinopyroxenites (with minimal high pressure fractionation) or a range of olivine-aluminous orthopyroxene-aluminous subcalcic clinopyroxene-garnet-(spinel) assemblages with variable 100 Mg/(Mg+Fe) ratios (when fractionation has been operative). All these assemblages may be subsequently modified by subsolidus exsolution and recrystallization.

Keywords

Partial Melting Salt Lake Crystallization Behaviour Pressure Fractionation Crystallization Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beeson, M.H., Jackson, E.D.: Origin of the garnet pyroxenite xenoliths at Salt Lake Crater, Oahu. Mineral. Soc. Am. Spec. Papers 3, 95–112 (1970)Google Scholar
  2. Boudier, F., Nicolas, A.: Fusion partielle gabbroique dans la lherzolite de Lanzo. Schweiz. Mineral. Petrog. Mitt. 52, 39–56 (1972)Google Scholar
  3. Bultitude, R.J., Green, D.H.: Experimental study of crystal-liquid relationships at high pressures in olivine nephelinite and basanite compositions. J. Petrol. 12, 121–147 (1971)Google Scholar
  4. Carswell, D.A.: Picritic magma-residual dunite relationships in garnet peridotite at Kalskaret, near Tafjord, South Norway. Contrib. Mineral. Petrol. 19, 97–124 (1968)Google Scholar
  5. Conquéré, F.: Les pyroxénolites à amphibole et les amphibolites, associées au lherzolites du gisement de Lherz (Ariège, France): un example du rôle de l'eau au cours de la crystallization fractionée des liquides issus de la fusion partielle de lherzolites. Contrib. Mineral. Petrol. 33, 32–61 (1971)Google Scholar
  6. Coombs, D.S.: Trends and affinities of basaltic magmas and pyroxenes as illustrated on the diopside-olivine-silica diagram. Mineral. Soc. Am. Spec. Papers 1, 227–250 (1963)Google Scholar
  7. Dickey, J.S.: Partial fusion products in alpine-type peridotites: Serrania de la Ronda and other examples. Mineral. Soc. Am. Spec. Papers 3, 33–49 (1970)Google Scholar
  8. Dickey, J.S., Yoder, H.S., Schairer, J.F.: Chromium in silicate-oxide systems. Carnegie Inst. Wash. Year Bk. 70, 118–122 (1971)Google Scholar
  9. Forbes, R.B.: The comparative chemical composition of eclogite and basalt. J. Geophys. Res. 70, 1515–1521 (1965)Google Scholar
  10. Forbes, R.B., Kuno, H.: The regional petrology of peridotite inclusions and basaltic host rocks. Internat. Union Geol. Sci. Copenhagen, pp. 161–179 (1965)Google Scholar
  11. Frey, F., Green, D.H.: The mineralogy, geochemistry and origin of lherzolite inclusions in Victorian basanites. Geochim. Cosmochim. Acta 38, 1023–1059 (1974)Google Scholar
  12. Green, D.H.: The origin of the “eclogites” from Salt Lake Crater, Hawaii. Earth Planet. Sci. Lett. 1, 414–420 (1966)Google Scholar
  13. Green, D.H.: Conditions of melting of basanite magma from garnet peridotite. Earth Planet. Sci. Lett. 17, 456–465 (1973a)Google Scholar
  14. Green, D.H.: Experimental melting studies of a model upper mantle composition at high pressure under water-saturated and water-undersaturated conditions. Earth Planet. Sci. Lett. 19, 37–53 (1973b)Google Scholar
  15. Green, D.H., Ringwood, A.E.: The genesis of basaltic magmas. Contrib. Mineral. Petrol. 15, 103–190 (1967)Google Scholar
  16. Green, D.H., Ringwood, A.E.: Mineralogy of peridotitic compositions under upper mantle conditions. Phys. Earth Planet. Interiors 3, 359–371 (1970)Google Scholar
  17. Hutchison, R., Chambers, A.L., Paul, D.K., Harris, P.G.: Chemical variation among French ultramafic xenoliths—evidence for a heterogeneous upper mantle. Mineral. Mag. 40, 153–170 (1975)Google Scholar
  18. Hutchison, R., Dawson, J.B.: Rb, Sr and Sr87/Sr86 in ultrabasic xenoliths and host rocks, Lashaine volcano, Tanzania. Earth Planet. Sci. Lett. 9, 87–92 (1970)Google Scholar
  19. Irving, A.J.: Geochemical and high pressure experimental studies of garnet pyroxenite and pyroxene granulite xenoliths from the Delegate basaltic pipes, Australia. J. Petrol. 15, 1–40 (1974a)Google Scholar
  20. Irving, A.J.: Pyroxene-rich ultramafic xenoliths in the Newer Basalts of Victoria. Neues Jahrb. Mineral. Abhand. 120, 147–167 (1974b)Google Scholar
  21. Ito, K., Kennedy, G.C.: Melting and phase relations in a natural peridotite to 40 kilobars. Am. J. Sci. 265, 211–217 (1967)Google Scholar
  22. Ito, K., Kennedy, G.C.: Melting and phase relations in the plane tholeiite-lherzolite-nepheline basanite to 40 kilobars with geological implications. Contrib. Mineral. Petrol. 19, 177–211 (1968)Google Scholar
  23. Jackson, E.D.: “Eclogite” in Hawaiian basalts. U.S. Geol. Surv. Profess. Papers 550-D, 151–157 (1966)Google Scholar
  24. Jackson, E.D.: The character of the lower crust and upper mantle beneath the Hawaiian Islands. 23rd Int. Geol. Congr. 1, 135–150 (1968)Google Scholar
  25. Jackson, E.D., Wright, T.L.: Xenoliths in the Honolulu Volcanic Series. J. Petrol. 11, 405–430 (1970)Google Scholar
  26. Kleeman, J.D., Green, D.H., Lovering, J.F.: Uranium distribution in ultramafic inclusions from Victorian basalts. Earth Planet. Sci. Lett. 5, 449–458 (1969)Google Scholar
  27. Kornprobst, J.: Le massif ultrabasique des Beni Bouchera (Rif Interne, Maroc): étude des péridotites de haute température et de haute pression, et des pyroxénolites, à grenat ou sans grenat. Contrib. Mineral. Petrol. 23, 283–322 (1969)Google Scholar
  28. Kornprobst, J., Conquéré, F.: Les pyroxénolites à grenat du massif de lherzolite de Montcaup (Haute Garonne—France): caractères communs avec certaines enclaves des basaltes alcalins. Earth Planet. Sci. Lett. 16, 1–14 (1972)CrossRefGoogle Scholar
  29. Kuno, H.: Aluminian augite and bronzite in alkali olivine basalt from Taka-sima, northern Kyushu, Japan. In: Advancing frontiers in geology and geophysics, pp. 205–220. Hyderabad: Osmania Univ. Press 1964Google Scholar
  30. Kuno, H.: Mafic and ultramafic nodules in basaltic rocks of Hawaii. Geol. Soc. Am. Mem. 115, 189–234 (1969)Google Scholar
  31. Kushiro, I.: Partial melting of synthetic and natural peridotites at high pressures. Carnegie Inst. Wash. Year Bk. 71, 357–362 (1972)Google Scholar
  32. Kushiro, I.: Origin of some magmas in oceanic and circum-oceanic regions. Tectonophysics 17, 211–222 (1973)Google Scholar
  33. Kushiro, I., Shimizu, N., Nakamura, Y.: Compositions of coexisting liquid and solid phases formed upon melting of natural garnet and spinel lherzolites at high pressures: a preliminary report. Earth Planet. Sci. Lett. 14, 19–25 (1972)CrossRefGoogle Scholar
  34. Kushiro, I., Yoder, H.S., Nishikawa, M.: Effect of water on the melting of enstatite. Geol. Soc. Am. Bull. 79, 1685–1692 (1968)Google Scholar
  35. Lasnier, B.: Les péridotites et pyroxénolites à grenat du Bois des Feuilles (Monts du Lyonnais) (France). Contrib. Mineral. Petrol. 34, 29–42 (1971)Google Scholar
  36. Leggo, P.J., Hutchison, R.: A Rb-Sr isotope study of ultrabasic xenoliths and their basaltic host rocks from the Massif Centrale, France. Earth Planet. Sci. Lett. 5, 71–75 (1968)Google Scholar
  37. Lovering, J.F., White, A.J.R.: Granulitic and eclogitic inclusions from basic pipes at Delegate, Australia. Contrib. Mineral. Petrol. 21, 9–52, (1969)Google Scholar
  38. Maaskant, P.: Chemical petrology of polymetamorphic ultramafic rocks from Galicia, NW Spain. Leidse Geol. Med. 42, 1–57 (1970)Google Scholar
  39. Macdonald, G.A., Katsura, T.: Chemical composition of Hawaiian lavas. J. Petrol. 5, 82–133 (1964)Google Scholar
  40. Mercier, J.-C.C., Nicolas, A.: Textures and fabrics of upper-mantle peridotites as illustrated by xenoliths from basalt. J. Petrol. 16, 454–487 (1975)Google Scholar
  41. Millhollen, G.L., Irving, A.J., Wyllie, P.J.: Melting interval of peridotite with 5.7 per cent water to 30 kilobars. J. Geol. 82, 575–587 (1974)Google Scholar
  42. Mori, T., Green, D.H.: Pyroxenes in the system Mg2Si2O6-CaMgSi2O6 at high pressure. Earth Planet. Sci. Lett. 26, 277–286 (1975)Google Scholar
  43. Mysen, B.O., Boettcher, A.L.: Melting of a hydrous mantle: II. Geochemistry of crystals and liquids formed by anatexis of mantle peridotite at high pressures and high temperatures as a function of controlled activities of water, hydrogen, and carbon dioxide. J. Petrol. 16, 549–593 (1975)Google Scholar
  44. Mysen, B.O., Boettcher, A.L.: Melting of a hydrous mantle: III. Phase relations of garnet websterite + H2O at high pressures and temperatures. J. Petrol. 17, 1–14 (1976)Google Scholar
  45. Nagasawa, H., Wakita, H., Higuchi, H., Onuma, N.: Rare earths in peridotite nodules: an explanation of the genetic relationship between basalt and peridotite nodules. Earth Planet. Sci. Lett. 5, 377–381 (1969)Google Scholar
  46. Nicholls, I.A.: A direct fusion method of preparing silicate rock glasses for energy-dispersive electron microprobe analysis. Chem. Geol. 14, 151–157 (1974)Google Scholar
  47. O'Hara, M.J.: The bearing of phase equilibria studies in synthetic and natural systems on the origin and evolution of basic and ultrabasic rocks. Earth-Sci. Rev. 4, 69–133 (1968)Google Scholar
  48. O'Hara, M.J.: The origin of eclogite and ariégite nodules in basalt. Geol. Mag. 106, 322–330 (1969)Google Scholar
  49. O'Hara, M.J., Richardson, S.W., Wilson, G.: Garnet-peridotite stability and occurrence in crust and mantle. Contrib. Mineral. Petrol. 32, 48–68 (1971)Google Scholar
  50. O'Hara, M.J., Yoder, H.S.: Formation and fractionation of basic magmas at high pressures. Scott. J. Geol. 3, 67–117 (1967)Google Scholar
  51. O'Neil, J.R., Hedge, C.E., Jackson, E.D.: Isotopic investigations of xenoliths and host basalts from the Honolulu Volcanic Series. Earth Planet. Sci. Lett. 8, 253–257 (1970)Google Scholar
  52. Paul, D.K.: Strontium isotope studies on ultramafic inclusions from Dreiser Weiher, Eifel, Germany. Contrib. Mineral. Petrol. 34, 22–28 (1971)Google Scholar
  53. Peterman, Z., Carmichael, I.S.E., Smith, A.L.: Strontium isotopes in Quaternary basalts of south eastern California. Earth Planet. Sci. Lett. 7, 381–384 (1970)Google Scholar
  54. Philpotts, J.A., Schnetzler, C.C., Thomas, H.H.: Petrogenetic implications of some new geochemical data on eclogitic and ultrabasic inclusions. Geochim. Cosmochim. Acta 36, 1131–1166 (1972)Google Scholar
  55. Reid, J.B., Frey, F.A.: Rare earth distributions in lherzolite and garnet pyroxenite and xenoliths and the constitution of the upper mantle. J. Geophys. Res. 76, 1184–1196 (1971)Google Scholar
  56. Reid, J.B., Prinz, M.: High pressure pyroxenite dikes in xenoliths from San Carlos, Arizona, and Salt Lake Crater, Hawaii. Geol. Soc. Am. Ann. Mtg. 1971, 679–680 (1971)Google Scholar
  57. Ringwood, A.E.: The chemical composition and origin of the earth. In: Advances in earth sciences (P.M. Hurley, ed.), p. 287–356. Cambridge: M.I.T. Press 1966Google Scholar
  58. Ross, C.S., Foster, M.D., Myers, A.T.: Origin of dunites and of olivine-rich inclusions in basaltic rocks. Am. Mineralogist 39, 693–737 (1954)Google Scholar
  59. Thompson, R.N.: Some high-pressure pyroxenes. Mineral. Mag. 39, 768–787 (1974)Google Scholar
  60. Tilley, C.E., Yoder, H.S.: Pyroxene fractionation in mafic magma at high pressures and its bearing on basalt genesis. Carnegie Inst. Wash. Year Bk. 63, 114–121 (1964)Google Scholar
  61. White, A.J.R., Clinopyroxenes from eclogites and basic granulites. Am. Mineralogist 49, 883–888 (1964)Google Scholar
  62. White, R.W.: Ultramafic inclusions in basaltic rocks from Hawaii. Contrib. Mineral. Petrol. 12, 245–314 (1966)Google Scholar
  63. Wilkinson, J.F.G.: Garnet clinopyroxenite inclusions from diatremes in the Gloucester area, New South Wales, Australia. Contrib. Mineral. Petrol. 46, 275–299 (1974)Google Scholar
  64. Wilkinson, J.F.G.: Ultramafic inclusions and high pressure megacrysts from a nephelinite sill, Nandewar Mountains, north-eastern New South Wales, and their bearing on the origin of certain ultramafic inclusions in alkaline volcanic rocks. Contrib. Mineral. Petrol. 51, 235–262 (1975)Google Scholar
  65. Wilshire, H.G., Jackson, E.D.: Problems in determining mantle geotherms from pyroxene compositions of ultramafic rocks. J. Geol. 83, 313–329 (1975)Google Scholar
  66. Wilshire, H.G., Shervais, J.W.: Al-augite and Cr-diopside ultramafic xenoliths in basaltic rocks from the western United States. Phys. Chem. of the Earth 9, 257–272 (1976)Google Scholar
  67. Winchell, H.: Honolulu Series, Oahu, Hawaii. Geol. Soc. Am. Bull. 58, 1–48 (1947)Google Scholar
  68. Yoder, H.S., Tilley, C.E.: Origin of basalt magmas: an experimental study of natural and synthetic rock systems. J. Petrol. 3, 342–532 (1962)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • J. F. G. Wilkinson
    • 1
  1. 1.Department of GeologyUniversity of New EnglandArmidaleAustralia

Personalised recommendations