Molecular and General Genetics MGG

, Volume 193, Issue 3, pp 445–452 | Cite as

Physical and genetic analysis of a symbiotic region of Rhizobium meliloti: Identification of nodulation genes

  • Eva Kondorosi
  • Zsofia Banfalvi
  • Adam Kondorosi


A 135 kb long segment of the symbiotic region of the Rhizobium meliloti megaplasmid was mapped with the help of a Rhizobium meliloti gene library, made in the cosmid vehicle pJB8. A set of overlapping cosmid clones was used to identify the inserts in R-primes carrying megaplasmid sections, and to map 20 deletion mutations and 24 insertion mutations with Nod- or Fix- phenotypes. This led to the identification of DNA regions carrying nod or fix (nif) genes. The results of this study correlate well with transcription data of nodule-specific expression of plasmid sequences. The nod mutations were localized in two groups. Using directed Tn5 mutagenesis, correlated physical-genetic maps for these regions were established. One nod gene cluster is about 2.5–3.0 kb in size and carries genes involved in root hair curling, a very early step in nodule formation. Mutations in these genes can be complemented by sym plasmids of other Rhizobium species, such as Rhizobium leguminosarum. We designate these genes as “common” nod genes because mutations in them can be complemented by plasmids derived from different Rhizobium strains. The other nod gene cluster consists of a 2 kb and a 1 kb long DNA segment, separated by a 1 kb region nonessential for nodulation. These nod genes are probably involved in the host specificity of nodulation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Banfalvi Z, Sakanyan V, Koncz C, Kiss A, Dusha I, Kondorosi A (1981) Location of nodulation and nitrogen fixation genes on a high molecular weight plasmid of R. meliloti. Mol Gen Genet 184:318–325PubMedGoogle Scholar
  2. Banfalvi Z, Randhawa GS, Kondorosi E, Kiss A, Kondorosi A (1983) Construction and characterization of R-prime plasmids carrying symbiotic genes of R. meliloti. Mol Gen Genet 189:129–135Google Scholar
  3. Beringer JE (1974) R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84:188–198Google Scholar
  4. Beringer JE, Beynon J, Buchanan-Wollaston AV, Johnston AWB (1978) Transfer of the drug-resistance transposon Tn5 to Rhizobium. Nature 276:633–634Google Scholar
  5. Collins J, Hohn B (1978) Cosmids: A type of plasmid gene-cloning vector that is packable in vitro in bacteriophage λ heads. Proc Natl Acad Sci USA 75:4242–4246Google Scholar
  6. Corbin D, Ditta G, Helinski DR (1983) Clustering of nitrogen fixation (nif) genes in Rhizobium meliloti. J Bacteriol 149:221–228Google Scholar
  7. Corbin D, Barran L, Ditta G (1983) Organization and expression of Rhizobium meliloti nitrogen fixation genes. Proc Natl Acad Sci USA 80:3005–3009Google Scholar
  8. Ditta G, Stanfield S, Corbin D, Helinski DR (1980) Broad host range DNA cloning system for Gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci USA 77:7347–7351Google Scholar
  9. Downie JA, Ma Q-S, Knight CD, Hombrecher G, Johnston AWB (1983a) Cloning of the symbiotic region of Rhizobium leguminosarum: the nodulation genes are between the nitrogenase genes and a nifA-like gene. EMBO J 2:947–952Google Scholar
  10. Downie JA, Hombrecher G, Ma Q-S, Knight CD, Wells B, Johnston AWB (1983b) Cloned nodulation genes of Rhizobium leguminosarum determine host-range specificity. Mol Gen Genet 190:359–365Google Scholar
  11. Forrai T, Vincze E, Banfalvi Z, Kiss GB, Randhawa GS, Kondorosi A (1983) Localization of symbiotic mutations in Rhizobium meliloti. J Bacteriol 153:635–643Google Scholar
  12. Hombrecher G, Brewin NJ, Johnston AWB (1981) Linkage of genes for nitrogenase and nodulation ability on plasmids in Rhizobium leguminosarum and R. phaseoli. Mol Gen Genet 182:133–136Google Scholar
  13. Hooykaas PJJ, Van Brussell AAN, Den Dulk-Ras H, Van Slogteren GMS, Schilperoort RA (1981) Sym-plasmid of Rhizobium trifolii expressed in different rhizobial species and in Agrobacterium tumefaciens. Nature 291:351–354Google Scholar
  14. Ish-Horowitz D, Burke JF (1981) Rapid and efficient cosmid cloning. Nucl Acids Res 9:2989–2998Google Scholar
  15. Johnston AWB, Beynon JL, Buchanan-Wollaston AV, Setchell SM, Hirsch PR, Beringer JE (1978) High frequency transfer of nodulation ability between strains and species of Rhizobium. Nature 276:634–636Google Scholar
  16. Kiss GB, Vincze E, Kalman Z, Forrai T, Kondorosi A (1979) Genetic and biochemical analysis of mutants affected in nitrate reduction in Rhizobium meliloti. J Gen Microbiol 113:105–118Google Scholar
  17. Kiss GB, Dobo K, Dusha I, Breznovits A, Orosz L, Vincze E, Kondorosi A (1980) Isolation and characterization of an R-prime plasmid in Rhizobium meliloti. J Bacteriol 141:121–128Google Scholar
  18. Kondorosi A, Kiss GB, Forrai T, Vincze E, Banfalvi Z (1977a) Circular linkage map of Rhizobium meliloti chromosome. Nature 264:525–527Google Scholar
  19. Kondorosi A, Svab Z, Kiss GB, Dixon RA (1977b) Ammonia assimilation and nitrogen fixation in Rhizobium meliloti. Mol Gen Genet 151:221–226Google Scholar
  20. Kondorosi A, Vincze E, Johnston AWB, Beringer JE (1980) A comparison of three Rhizobium linkage maps. Mol Gen Genet 178:403–408CrossRefGoogle Scholar
  21. Kondorosi A, Kondorosi E, Pankhurst CE, Broughton WJ, Banfalvi Z (1982a) Mobilization of a Rhizobium meliloti megaplasmid carrying nodulation and nitrogen fixation genes into other rhizobia and Agribacterium. Mol Gen Genet 188:433–439Google Scholar
  22. Kondorosi A, Kondorosi E, Banfalvi Z, Broughton WJ, Pankhurst CE, Randhawa GS, Wong CH, Schell J (1982b) Analysis of symbiotic nitrogen fixation genes carried by the Rhizobium meliloti megraplasmid. In: Pühler A (ed) Molecular genetics of the bacteria-plant interaction. Springer-Verlag, Berlin-Heidelberg-New York (in press)Google Scholar
  23. Kondorosi E, Banfalvi Z, Slaska-Kiss K, Kondorosi A (1983) Analysis of symbiotic nitrogen fixation genes carried by Rhizobium meliloti megaplasmid. In: Goldberg R (ed) UCLA symposia on molecular and cellular biology; Plant molecular biology. AR Liss Inc, New York (in press)Google Scholar
  24. Lamb JW, Hombrecher G, Johnston AWB (1982) Plasmid-determined nodulation and nitrogen-fixation abilities in Rhizobium phaseoli. Mol Gen Genet 186:449–452Google Scholar
  25. Long SR, Buikema WJ, Ausubel FM (1982) Cloning of Rhizobium meliloti nodulation genes by direct complementation of Nod- mutants. Nature 298:485–488Google Scholar
  26. Maizels N (1976) Dictyostelium 17S, 25S and 5S rDNAs lie within a 38,000 base pair repeated unit. Cell 9:431–438Google Scholar
  27. Maniatis T, Jeffrey A, Kleid DB (1975) Nucleotide sequence of the right ward operator of phage λ. Proc Natl Acad Sci USA 72:1184–1188Google Scholar
  28. Meade HM, Long SR, Ruvkun GB, Brown SE, Ausubel FM (1982) Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J Bacteriol 149:114–122PubMedGoogle Scholar
  29. Orosz L, Svab Z, Kondorosi A, Sik T (1973) Genetic studies on Rhizobiophage 16-3. Genes and functions on the chromosome. Mol Gen Genet 125:341–350Google Scholar
  30. Paau AS, Leps WT, Brill WJ (1981) Agglutinin from alfalfa necessary for binding and nodulation by Rhizobium meliloti. Science 213:1513–1515Google Scholar
  31. Pankhurst CE, Broughton WJ, Bachem C, Kondorosi E, Kondorosi A Identification of nitrogen fixation and nodulation genes on a large plasmid from a broad host range Rhizobium sp. In: Pühler A (ed) Molecular genetics of the bacteria-plant interaction. Springer-Verlag, Berlin-Heidelberg-New York (in press)Google Scholar
  32. Rolfe BG, Djordjevic M, Scott KF, Hughes JE, Badenoch-Jones J, Greeshoff PM, Cen Y, Dudman WF, Hurkowski W, Shine J (1981) Analysis of the nodule forming ability of fast-growing Rhizobium strains. In: Gibson AH, Newton WE (eds) Current perspectives in nitrogen fixation, Australian Academy of Science. Canberra, pp 142–145Google Scholar
  33. Rosenberg C, Boistard P, Denarie J, Casse-Delbart F (1981) Genes controlling early and late functions in symbiosis are located on a megaplasmid in Rhizobium meliloti. Mol Gen Genet 184:326–333Google Scholar
  34. Ruvkun GB, Ausubel FM (1981) A general method for site-directed mutagenesis in prokaryotes. Nature 289:85–88Google Scholar
  35. Ruvkun GB, Sundaresan V, Ausubel FM (1982a) Directed transposon Tn5 mutagenesis and complementation analysis of Rhizobium meliloti symbiotic nitrogen fixation genes. Cell 29:551–559Google Scholar
  36. Ruvkun GB, Long SR, Meade HM, Van den Bos RC, Ausubel FM (1982b) ISRml: A Rhizobium meliloti insertion sequence that transposes preferentially into nitrogen fixation genes. J Mol Appl Gen 1:405–418Google Scholar
  37. Simon R, Weber G, Arnold W, Pühler A (1983) Analysis of plasmid borne genes in Rhizobium meliloti by Tn5 mutagenesis. In: Clark and Stephens (eds) Proceedings of the 8th rhizobium conference. University of Manitoba Press, Winnipeg, Canada (in press)Google Scholar
  38. Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517Google Scholar
  39. Willmitzer L, Otten L, Simons G, Schmalenbach W, Schröder J, Schröder G, Van Montagu M, De Vos G, Schell J (1981) Nuclear and polysomal transcripts of T-DNA in octopine crown gall suspension and callus cultures. Mol Gen Genet 182:255–262Google Scholar
  40. Wong CH, Pankhurst CE, Kondorosi A, Broughton WJ (1983) Morphology of root nodules and nodule-like structures formed by Rhizobium and Agrobacterium strains containing a Rhizobium meliloti megaplasmid. J Cell Biol 97:787–794CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Eva Kondorosi
    • 1
  • Zsofia Banfalvi
    • 2
  • Adam Kondorosi
    • 2
  1. 1.Institute of Biochemistry, Biological Research CenterHungarian Academy of SciencesSzegedHungary
  2. 2.Institute of Genetics, Biological Research CenterHungarian Academy of SciencesSzegedHungary

Personalised recommendations