Molecular and General Genetics MGG

, Volume 193, Issue 3, pp 437–444

Arginine degradation in Pseudomonas aeruginosa mutants blocked in two arginine catabolic pathways

  • Dieter Haas
  • Hideki Matsumoto
  • Paola Moretti
  • Victor Stalon
  • Annick Mercenier


Pseudomonas aeruginosa mutants defective in agmatine utilization (agu) were isolated. The genes encoding agmatine deiminase (aguA) and N-carbamoylputrescine amidinohydrolase (aguB) were 98% cotransducible and mapped between gpu and ser-3 in the 30 min region of the chromosome. Constructed agu arc double mutants (blocked in the arginine decarboxylase and arginine deiminase pathways) used arginine efficiently as the sole carbon and nitrogen source. This suggests the existence of a further arginine catabolic pathway in P. aeruginosa. The mapping data of this study confirm that in P. aeruginosa the chromosomal genes with catabolic functions do not show supraoperonic clustering as found in P. putida.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bachrach U, Cohen I (1961) Sperimidine in the bacterial cell. J Gen Microbiol 26:1–9Google Scholar
  2. Bennett PM, Grinsted J, Richmond H (1977) Transposition of TnA does not generate deletions. Mol Gen Genet 154:205–211Google Scholar
  3. Broman K, Lauwers N, Stalon V, Wiame J-M (1978) Oxygen and nitrate in utilization by Bacillus licheniformis of the arginase and arginine deiminase routes of arginine catabolism and other factors affecting their syntheses. J Bacteriol 135:920–927PubMedGoogle Scholar
  4. Chang YF, Adams E (1977) Glutarate semialdehyde dehydrogenase of Pseudomonas. J Biol Chem 252:7979–7986PubMedGoogle Scholar
  5. Fearon WR, Bell EA (1955) Canavanine: detection and occurrence in Colutea arborescens. Biochem J 59:221–224Google Scholar
  6. Friedrich B, Magasanik B (1978) Utilization of arginine by Klebsiella aerogenes. J Bacteriol 133:680–685Google Scholar
  7. Haas D, Holloway BW (1978) Chromosome mobilization by the R plasmid R68.45: a tool in Pseudomonas genetics. Mol Gen Genet 158:229–237CrossRefGoogle Scholar
  8. Haas D, Holloway BW, Schamböck A, Leisinger T (1977) The genetic organization of arginine biosynthesis in Pseudomonas aeruginosa. Mol Gen Genet 154:7–22Google Scholar
  9. Haas D, Evans R, Mercenier A, Simon J-P, Stalon V (1979) Genetic and physiological characterization of Pseudomonas aeruginosa mutants affected in the catabolic ornithine carbamoyltransferase. J Bacteriol 139:713–720Google Scholar
  10. Haas D, Watson J, Krieg R, Leisinger T (1981a) Isolation of an Hfr donor of Pseudomonas aeruginosa PAO by insertion of the plasmid RP1 into the tryptophan synthase gene. Mol Gen Genet 182:240–244Google Scholar
  11. Haas D, Kley M, Mercenier A, Leisinger T (1981b) How many arginine catabolic pathways are there in Pseudomonas aeruginosa? Experientia 37:1219Google Scholar
  12. Holloway BW (1969) Genetics of Pseudomonas. Bacteriol Rev 33:419–443Google Scholar
  13. Holloway BW, Krishnapillai V, Morgan AF (1979) Chromosomal genetics of Pseudomonas. Microbiol Rev 43:73–102PubMedGoogle Scholar
  14. Holloway BW, Crowther C, Dean H, Hagedorn J, Holmes N, Morgan AF (1982) Integration of plasmids into the Pseudomonas chromosome. In: Mitsuhashi S (ed) Drug resistance in bacteria. Japan Scientific Societies Press, Tokyo, p 231–242Google Scholar
  15. Isaac JH, Holloway BW (1968) Control of pyrimidine biosynthesis in Pseudomonas aeruginosa. J Bacteriol 96:1732–1741Google Scholar
  16. Kay WW, Gronlund AF (1969) Amino acid pool formation in Pseudomonas aeruginosa. J Bacteriol 97:282–291Google Scholar
  17. Leisinger T, Haas D, Hegarty MP (1972) Indospicine as an arginine antagonist in Escherichia coli and Pseudomonas aeruginosa. Biochim Biophys Acta 262:214–219Google Scholar
  18. Manch JN, Crawford IP (1981) Ordering tryptophan synthase genes of Pseudomonas aeruginosa by cloning in Escherichia coli. J Bacteriol 146:102–107Google Scholar
  19. Matsumoto H, Nakazawa T, Ohta S, Terawaki Y (1981) Chromosomal locations of catA, pobA, pcaA, dcu and chu genes in Pseudomonas aeruginosa. Genet Res Camb 38:251–266Google Scholar
  20. Mee BJ, Lee BTO (1967) An analysis of histidine requiring mutants in Pseudomonas aeruginosa. Genetics 55:709–722Google Scholar
  21. Meile L, Soldati L, Leisinger T (1982) Regulation of proline catabolism in Pseudomonas aeruginosa PAO. Arch Microbiol 132:189–193Google Scholar
  22. Mercenier A, Simon J-P, Haas D, Stalon V (1980a) Catabolism of L-arginine by Pseudomonas aeruginosa. J Gen Microbiol 116:381–389Google Scholar
  23. Mercenier A, Simon J-P, Vander Wauven C, Haas D, Stalon V (1980b) Regulation of enzyme synthesis in the arginine deiminase pathway of Pseudomonas aeruginosa. J Bacteriol 144:159–163Google Scholar
  24. Mercenier A, Stalon V, Simon J-P, Haas D (1982) Mapping of the arginine deiminase gene in Pseudomonas aeruginosa. J Bacteriol 149:787–788Google Scholar
  25. Micklus MJ, Stein IM (1973) The colorimetric determination of mono- and disubstituted guanidines. Anal Biochem 54:545–553Google Scholar
  26. Rahman M, Laverack PD, Clarke PH (1980) The catabolism of arginine by Pseudomonas aeruginosa. J Gen Microbiol 116:371–380Google Scholar
  27. Rella M, Haas D (1982) Resistance of Pseudomonas aeruginosa PAO to nalidixic acid and low levels of β-lactam antibiotics: mapping of chromosomal genes. Antimicrob Agents Chemother 22:242–249Google Scholar
  28. Royle PL, Matsumoto H, Holloway BW (1981) Genetic circularity of the Pseudomonas aeruginosa PAO chromosome. J Bacteriol 145:145–155Google Scholar
  29. Smith DW, Fahrney DE (1978) Catalysis by arginine deiminase: evidence for a covalent intermediate. Biochem Biophys Res Commun 83:101–106Google Scholar
  30. Soldati L, Crockett R, Carrigan JM, Leisinger T, Holloway BW, Haas D (1984) Revised locations of the hisI and pru (proline utilization) genes on the Pseudomonas aeruginosa chromosome map. Mol Gen Genet 193:431–436PubMedGoogle Scholar
  31. Soldati L, Leisinger T, Haas D (1982) Mapping of genes for proline and ornithine utilization in Pseudomonas aeruginosa. Experientia 38:1379Google Scholar
  32. Stanisich VA, Holloway BW (1972) A mutant sex factor of Pseudomonas aeruginosa. Genet Res Camb 19:91–108Google Scholar
  33. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180Google Scholar
  34. Vanderbilt AS, Gaby NS, Rodwell VW (1975) Intermediates and enzymes between α-ketoarginine and γ-guanidinobutyrate in the L-arginine catabolic pathway of Pseudomonas putida. J Biol Chem 250:5322–5329Google Scholar
  35. Voellmy R, Leisinger T (1975) Dual role for N 2-acetylornithine 5-aminotransferase from Pseudomonas aeruginosa in arginine biosynthesis and arginine catabolism. J Bacteriol 122:799–809Google Scholar
  36. Voellmy R, Leisinger T (1976) Role of 4-aminobutyrate aminotransferase in the arginine metabolism of Pseudomonas aeruginosa. J Bacteriol 128:722–729Google Scholar
  37. Voellmy R, Leisinger T (1978) Regulation of enzyme synthesis in the arginine biosynthetic pathway of Pseudomonas aeruginosa. J Gen Microbiol 109:25–35Google Scholar
  38. Vogel HJ, Bonner DM (1956) Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem 218:97–106Google Scholar
  39. Walker JB, Walker MS (1970) Amidinotransferase (Streptomyces bikiniensis). Methods Enzymol 17A:1012–1015Google Scholar
  40. Watson JM, Holloway BW (1976) Suppressor mutations in Pseudomonas aeruginosa. J Bacteriol 125:780–786Google Scholar
  41. Wheelis M (1975) The genetics of dissimilatory pathways in Pseudomonas. Annu Rev Microbiol 29:505–524CrossRefGoogle Scholar
  42. Yorifuji T, Sugai I, Matsumoto H, Tabuchi A (1982) Characterization of 3-guanidinopropionate amidinohydrolase from Pseudomonas aeruginosa and a comparative study with 4-guanidinobutyrate amidinohydrolase from another Pseudomonas. Agric Biol Chem 46:1361–1367Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Dieter Haas
    • 1
  • Hideki Matsumoto
    • 2
  • Paola Moretti
    • 1
  • Victor Stalon
    • 3
  • Annick Mercenier
    • 3
  1. 1.Mikrobiologisches InstitutEidgenössische Technische HochschuleZürichSwitzerland
  2. 2.Department of Bacteriology, School of MedicineShinshu UniversityMatsumotoJapan
  3. 3.Laboratoire de Microbiologie, Faculté des SciencesUniversité Libre de BruxellesBruxellesBelgium
  4. 4.Transgène SAStrasbourgFrance

Personalised recommendations