Molecular and General Genetics MGG

, Volume 193, Issue 3, pp 431–436

Revised locations of the hisI and pru (proline utilization) genes on the Pseudomonas aeruginosa chromosome map

  • Leda Soldati
  • Robert Crockett
  • Judith M. Carrigan
  • Thomas Leisinger
  • Bruce W. Holloway
  • Dieter Haas


The location of genes in the vicinity of the major FP2 origin on the chromosome of Pseudomonas aeruginosa PAO has been revised. The markers hisI (a transduction group of histidine biosynthetic genes) and pru (a gene cluster encoding proline utilization functions) were located in the 90 to 95/0 min chromosome region by a series of plate matings mediated by R68.45. Three-factor-crosses using this plasmid established the following marker order: pur-67 pru hisI/cys-59 proB ilvB/C. Genetic evidence is presented to confirm the previous observations that FP2 can mobilize the chromosome from at least two origins near proB and in both directions. Thus, when markers in this chromosome region are analyzed by FP2 crosses only, the mapping data may be difficult to interpret. This complication can be overcome by the use of R68.45 and Tfr (transposon-facilitated recombination) or Hfr donors.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arst HN Jr, Jones SA, Bailey CR (1981) A method for the selection of deletion mutations in the L-proline catabolism gene cluster of Aspergillus nidulans. Genet Res Camb 38:171–195Google Scholar
  2. Bachmann BJ, Low KB (1980) Linkage map of Escherichia coli K-12, edition 6. Microbiol Rev 44:1–56Google Scholar
  3. Booker RJ, Loutit JS (1974) The order of replication of chromosomal markers in Pseudomonas aeruginosa strain 1. I. Marker frequency analysis by transduction. Genet Res Camb 23:145–153Google Scholar
  4. Chandler PM, Krishnapillai V (1974) Isolation and properties of recombination-deficient mutants of Pseudomonas aeruginosa. Mutat Res 23:15–23Google Scholar
  5. Day M, Potts JR, Clarke PH (1975) Location of genes for the utilization of acetamide, histidine and proline on the chromosome of Pseudomonas aeruginosa. Genet Res Camb 25:71–78Google Scholar
  6. Fargie B, Holloway BW (1965) Absence of clustering of functionally related genes in Pseudomonas aeruginosa. Genet Res Camb 6:284–299Google Scholar
  7. Fyfe JAM, Govan JRW (1980) Alginate synthesis in mucoid Pseudomonas aeruginosa: a chromosomal locus involved in control. J Gen Microbiol 119:443–450Google Scholar
  8. Haas D, Holloway BW (1976) R factor variants with enhanced sex factor activity in Pseudomonas aeruginosa. Mol Gen Genet 144:243–251Google Scholar
  9. Haas D, Holloway BW, Schamböck A, Leisinger T (1977) The genetic organization of arginine biosynthesis in Pseudomonas aeruginosa. Mol Gen Genet 154:7–22Google Scholar
  10. Haas D, Watson J, Krieg R, Leisinger T (1981) Isolation of an Hfr donor of Pseudomonas aeruginosa PAO by insertion of the plasmid RP1 into the tryptophan synthase gene. Mol Gen Genet 182:240–244Google Scholar
  11. Haas D, Holloway BW (1978) Chromosome mobilization by the R plasmid R68,45: a tool in Pseudomonas genetics. Mol Gen Genet 158:229–237CrossRefGoogle Scholar
  12. Holloway BW (1955) Genetic recombination in Pseudomonas aeruginosa. J Gen Microbiol 13:572–581Google Scholar
  13. Holloway BW (in press) Pseudomonas. In: Ball C (ed) Genetics and breeding of industrial microorganisms. CRC Press, Boca Raton, Florida, USAGoogle Scholar
  14. Holloway BW, Krishnapillai V, Morgan AF (1979) Chromosomal genetics of Pseudomonas. Microbiol Rev 43:73–102PubMedGoogle Scholar
  15. Isaac JH, Holloway BW (1968) Control of pyrimidine biosynthesis in Pseudomonas aeruginosa. J Bacteriol 96:1732–1741PubMedGoogle Scholar
  16. Isaac JH, Holloway BW (1972) Control of arginine biosynthesis in Pseudomonas aeruginosa. J Gen Microbiol 73:427–438Google Scholar
  17. Krishna RV, Beilstein P, Leisinger T (1979) Biosynthesis of proline in Pseudomonas aeruginosa. Properties of γ-glutamyl phosphate reductase and 1-pyrroline-5-carboxylate reductase. Biochem J 181:223–230Google Scholar
  18. Krishnapillai V (1971) A novel transducing phage. Its role in recognition of a possible new host-controlled modification system in Pseudomonas aeruginosa. Mol Gen Genet 114:134–143Google Scholar
  19. Krishnapillai V, Royle P, Lehrer J (1981) Insertions of the transposon Tn1 into the Pseudomonas aeruginosa chromosome. Genetics 97:495–511Google Scholar
  20. Lehrbach PR, Dirckze CD, Lee BTO (1980) A mutant of Pseudomonas aeruginosa deficient in an ATP-dependent deoxyribonuclease. J Gen Microbiol 120:377–384Google Scholar
  21. Leisinger T, Haas D, Hegarty MP (1972) Indospicine as an arginine antagonist in Escherichia coli and Pseudomonas aeruginosa. Biochim Biophys Acta 262:214–219Google Scholar
  22. Loutit JS (1969) Investigation of the mating system of Pseudomonas aeruginosa strain 1. IV. Mapping of distal markers. Genet Res Camb 13:91–98Google Scholar
  23. Loutit JS, Marinus MG (1968) Investigation of the mating system of Pseudomonas aeruginosa strain. 1. II. Mapping of a number of early markers. Genet Res Camb 12:37–44Google Scholar
  24. Matsumoto H, Ohta S, Kobayashi R, Terawaki Y (1978) Chromosomal location of genes participating in the degradation of purines in Pseudomonas aeruginosa. Mol Gen Genet 167:165–176Google Scholar
  25. Mee BJ, Lee BTO (1967) An analysis of histidine requiring mutants in Pseudomonas aeruginosa. Genetics 55:709–722Google Scholar
  26. Mee BJ, Lee BTO (1969) A map order for hisI, one of the genetic regions controiling histidine biosynthesis in Pseudomonas aeruginosa, using the transducing phage F116. Genetics 62:687–696PubMedGoogle Scholar
  27. Meile L, Leisinger T (1982) Purification and properties of the bifunctional proline dehydrogenase/1-pyrroline-5-carboxylate dehydrogenase from Pseudomonas aeruginosa. Eur J Biochem 129:67–75Google Scholar
  28. Meile L, Soldati L, Leisinger T (1982) Regulation of proline catabolism in Pseudomonas aeruginosa PAO. Arch Microbiol 132:189–193Google Scholar
  29. Menzel R, Roth J (1981) Regulation of the genes for proline utilization in Salmonella typhimurium: autogeneous repression by the putA gene product. J Mol Biol 148:21–44Google Scholar
  30. Novick RP, Clowes RC, Cohen SN, Curtiss R, Datta N, Falkow S (1976) Uniform nomenclature for bacterial plasmids: a proposal. Bacteriol Rev 40:168–189Google Scholar
  31. Pemberton JM (1974) Size of the chromosome of Pseudomonas aeruginosa PAO. J Bacteriol 119:748–752Google Scholar
  32. Pemberton JM, Holloway BW (1972) Chromosome mapping in Pseudomonas aeruginosa. Genet Res Cam 19:251–260Google Scholar
  33. Royle PL, Holloway BW (1981) New prime plasmids from Pseudomonas aeruginosa. Genet Res Camb 37:265–274Google Scholar
  34. Royle PL, Matsumoto H, Holloway BW (1981) Genetic circularity of the Pseudomonas aeruginosa PAO chromosome. J Bacteriol 145:145–155Google Scholar
  35. Stanisich V, Holloway BW (1969) Conjugation in Pseudomonas aeruginosa. Genetics 61:327–339Google Scholar
  36. Vogel HJ, Bonner DM (1956) Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem 218:97–106Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Leda Soldati
    • 1
  • Robert Crockett
    • 2
  • Judith M. Carrigan
    • 2
  • Thomas Leisinger
    • 1
  • Bruce W. Holloway
    • 2
  • Dieter Haas
    • 1
  1. 1.Mikrobiologisches InstitutEidgenössische Technische HochschuleZürichSwitzerland
  2. 2.Department of GeneticsMonash UniversityClaytonAustralia
  3. 3.Biotechnology Australia Pty. Ltd.RosevilleAustralia

Personalised recommendations