Advertisement

Applied Scientific Research, Section A

, Volume 13, Issue 1, pp 37–42 | Cite as

Vibration of rectangular orthotropic plates

  • K. T. Sundara Raja Iyengar
  • K. S. Jagadish
Article

Summary

An approximate analytical procedure has been given to solve the problem of a vibrating rectangular orthotropic plate, with various combinations of simply supported and clamped boundary conditions. Numerical results have been given for the case of a clamped square plate.

Keywords

Boundary Condition Analytical Procedure Orthotropic Plate Clamp Boundary Condition Rectangular Orthotropic Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nomenclature

2a, 2b

sides of the rectangular plate

h

plate thickness

E′x, E′y, E″, G

elastic constants of te orthotropic material

Dx

E′ x h3/12

Dy

E′ y h3/12

Hxy

E″h3/12+Gh3/6 D x , D y and H xy are rigidity constants of the orthotropic plate

ρ

mass of the plate per unit area

ν

Poisson's ratio

W

deflection of the plate

p

circular frequency

γ

b/a ratio

Xm, Yn

characteristic functions of the vibrating beam problem

λ

ρp2a2b2/H xy the frequency parameter.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Kanazawa, T. and T. Kawai, Proc. 2nd Japan National Congress for Applied Mechanics (1952) 333.Google Scholar
  2. 2).
    Timoshenko, S. P., Theory of Plates and Shells, New York, 1959.Google Scholar
  3. 3).
    Hoppmann II, W. H., J. Appl. Mech. 22 (1955) 267Google Scholar
  4. 4).
    Hoppmann II, W. H., N. J. Huffington, jr. and L. S. Magness, J. Appl. Mech. 23 (1956) 343.Google Scholar
  5. 5).
    Hoppmann II, W. H. and N. J. Huffinton, Jr. J. Appl. Mech. 25 (1958) 389.Google Scholar
  6. 6).
    Hoppmann II, W. H. and R. L. Thorkildsen, J. Appl. Mech. 26 (1959) 298.Google Scholar
  7. 7).
    Hearmon, R. F. S., J. Appl. Mech. 26 (1959) 537.Google Scholar
  8. 8).
    Warburton, G. B., Proc. Instn. Mech. Engrs. 168 (1954) 371.Google Scholar
  9. 9).
    Kirk, C. L., J. Mech. Eng. Science, 2 (1960) 242.Google Scholar

Copyright information

© Martinus Nijhoff 1964

Authors and Affiliations

  • K. T. Sundara Raja Iyengar
    • 1
  • K. S. Jagadish
    • 1
  1. 1.Civil and Hydraulic Engineering SectionIndian Institute of ScienceBangaloreIndia

Personalised recommendations