Advertisement

Contributions to Mineralogy and Petrology

, Volume 86, Issue 2, pp 131–148 | Cite as

Heat capacities and entropies of silicate liquids and glasses

  • J. F. Stebbins
  • I. S. E. Carmichael
  • L. K. Moret
Article

Abstract

The heat capacities of several dozen silicate glasses and liquids composed of SiO2, TiO2, Al2O3, Fe2O3, FeO, MgO, CaO, BaO, Li2O, Na2O, K2O, and Rb2O have been measured by differential scanning and drop calorimetry. These results have been combined with data from the literature to fit Cpas a function of composition. A model assuming ideal mixing (linear combination) of partial molar heat capacities of oxide components (each of which is independent of composition), reproduces the glass data within error. The assumption of constancy of ¯Cp,iis less accurate for the liquids, but data are not sufficient to adequately constrain a more complex model. For liquids containing alkali metal and alkaline earth oxides, heat capacities are systematically greater in liquids with high “field strength” network modifying cations. Entropies of fusion (per g-atom) and changes of configurational entropy with temperature, are similarly affected by composition. Both smaller cation size and greater charge are therefore inferred to lead to greater development of new structural configurations with increasing temperature in silicate liquids.

Keywords

TiO2 Entropy Heat Capacity Na2O Li2O 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam G, Gibbs JH (1965) On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys 43:139–146Google Scholar
  2. Adamkovicova K, Kosa L, Proks I (1980) The heat of fusion of CaSiO3. Silikaty 23:193–201Google Scholar
  3. Angell CA, Rao KS (1972) Configurational excitations in condensed matter, and the “Bond Lattice” model for the liquid-glass transition. J Chem Phys 57:470–481Google Scholar
  4. Angell CA, Sichina W (1976) Thermodynamics of the glass transition: empirical aspects. Ann NY Acad Sci 279:53–67Google Scholar
  5. Angell CA, Tucker JC (1974) Glass-forming molten salt systems. In: Physical Chemistry of Process Metallurgy, the Richardson Conference. Jeffes JHE, Tait RJ (eds.) pp 207–214. London: Inst Mineral MetGoogle Scholar
  6. Angell CA, Cheeseman P, Tamadden S (1983) Water-like transport property anomalies in liquid silicates. Investigation at high temperature and pressure by computer simulation techniques. Bull Mineral 106:87–97Google Scholar
  7. Arndt J, Haberle F (1973) Thermal expansion and glass transition temperatures of synthetic glasses of plagioclase-like compositions. Contrib Mineral Petrol 39:175–183Google Scholar
  8. Babcock CL (1977) Silicate glass technology methods. New York: J Wiley and Sons, pp 326Google Scholar
  9. Bacon CR (1977) High temperature heat content and heat capacity of silicate glasses: experimental determination and a model for calculation. Am J Sci 277:109–135Google Scholar
  10. Barrett LR, Thomas AG (1959) Surface tension and density measurements on molten glasses in the CaO-Al2O3-SiO2 system. J Soc Glass Technol 43:179T-190TGoogle Scholar
  11. Birch F (1966) Compressibility; elastic constants. In: Handbook of Physical Constants Clark SP Jr. (ed) Geol Soc Am Mem 97:97–174Google Scholar
  12. Bockris JO, Tomlinson JW, White JL (1955) The structure of the liquid silicates: partial molar volumes and expansivities. Trans Faraday Soc 52:299–310Google Scholar
  13. Bottinga Y, Richet P (1978) Thermodynamics of liquid silicates, a preliminary report. Earth Planet Sci Let 40:382–400Google Scholar
  14. Bottinga Y, Weill DF (1972) The viscosity of magmatic silicate liquids: a model for calculation. Am J Sci 272:438–475Google Scholar
  15. Bottinga Y, Weill DF, Richet P (1982) Density calculations for liquid silicates. I. Revised method for aluminosilicate compositions. Geochim Cosmochim Acta 46:909–920Google Scholar
  16. Bottinga Y, Richet P, Weill DF (1983) Calculation of the density and thermal expansion coefficient of silicate liquids. Bull Mineral 106:129–138Google Scholar
  17. Brawer SA, White WB (1975) Raman spectroscopic investigation of the structure of silicate glasses. I. The binary alkali silicates. J Chem Phys 63:2421–2432Google Scholar
  18. Briggs J (1975) Thermodynamics of the glass transition temperature in the system CaO-MgO-Al2O3-SiO2. Central Glass Ceram Res Inst Bull (Calcutta) 22:73–82Google Scholar
  19. Brown GE Jr, Apted MJ (1982) Application of X-ray absorbtion spectroscopy in the study of earth materials. Trans Am Geophys Union 63:1129Google Scholar
  20. Carmichael ISE, Nicholls J, Spera FJ, Wood BJ, Nelson SA (1977) High temperature properties of silicate liquids: applications to the equilibrium and ascent of basic magma. Phil Trans Royal Soc London A 286:373–431Google Scholar
  21. Chapman TW (1966) The heat capacity of liquid metals. Mat Sci Eng 1:65–69Google Scholar
  22. Davis JC (1973) Statistics and data analysis in geology. New York: J Wiley and Sons, pp 550Google Scholar
  23. DeJong BHWS, Brown GE (1980a) The polymerization of silicate and aluminate tetrahedra in glasses, melts, and aqueous solutions-I. Electronic structure of H6Si2O7, H6AlSiO7 −1, and H6Al2O7 −2. Geochim Cosmochim Acta 44:491–511Google Scholar
  24. DeJong BHWS, Brown GE (1980b) The polymerization of silicate and aluminate tetrahedra in glasses, melts, and aqueous solutions-II. The network modifying effects of Mg2+, K+, Na+, Li+, H+, OH, F, Cl, H2O, CO2 and H3O+ on silicate polymers. Geochim Cosmochim Acta 44:1627–1642Google Scholar
  25. DeJong BHWS, Brown GE (1981) The polymerization of silicate and aluminate tetrahedra in glasses, melts, and aqueous solutions-III. Local silicon environments and internal nucleation in silicate glasses. Geochim Cosmochim Acta 45:1291–1308Google Scholar
  26. Faber TE (1972) Introduction to the theory of liquid metals. Cambridge, England: Cambridge University Press, pp 584Google Scholar
  27. Ghiorso MS, Carmichael ISE (1984) Comments on density calculations for silicate liquids. I. Revised method for aluminosilicate compositions, by Bottinga, Weill, and Richet: Critical comments. Geochim Cosmochim Acta 48:401–408Google Scholar
  28. Ghiorso MS, Carmichael ISE, Rivers ML, Sack RO (1983) The Gibbs free energy of mixing of natural silcate liquids; an expanded regular solution approximation for the calculation of magmatic intensive variables. Contrib Mineral Petrol 84:107–145Google Scholar
  29. Gibbs JH, DiMarzio EA (1958) Nature of the glass transition and the glasy state. J Chem Phys 28:373–383Google Scholar
  30. Harris J, Carmichael ISE, Stebbins J F (1982) Transition temperatures in multicomponent glasses. Trans Am Geophys Union 63:1137Google Scholar
  31. Helgeson HC, Delaney JM, Nesbitt HW, Bird DK (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. Am J Sci 278-A:1–229Google Scholar
  32. Helgeson HC, Kirkham DH, Flowers GC (1981) Theoretical prediction of the thermodynamic behaviour of aqueous electrolytes at high pressures and temperatures: IV. Calculation of activity coefficients, and apparent molal and standard and relative partial molal properties to 600° C and 5 kb. Am J Sci 281:1249–1516Google Scholar
  33. Hess PC (1977) Structure of silicate melts. Can Min 15:162–178Google Scholar
  34. Hess PC (1980) Polymerization model for silicate liquids. In: Physics of Magmatic Processes. Hargraves RB (ed) Princeton NJ: Princeton University Press, pp 3–48Google Scholar
  35. Hochella MF Jr, Brown GE Jr. (1981) Comments on the structural role of alumminum in aluminosilicate glasses and melts and magmatic liquids. Geol Soc Am Abstr with Progr 13:473Google Scholar
  36. Hultgren R, Desai PD, Hawkins DT, Gleiser, M, Kelley KK (1973) Selected values of the thermodynamic properties of binary alloys. Metals Park, Ohio: Am Soc Met, pp 1435Google Scholar
  37. Kelley KK, Barany R, King EG, Christensen AU (1959) Some thermodynamic properties of fluorphlogopite mica. US Bur Mines Rep Invest 5436, 16 pp.Google Scholar
  38. King EG, Orr RL, Bonnickson KR (1954) Low-temperature heat capacity, entropy at 298.16 K and high-temperature heat content of sphene (CaTiSiO5). J Am Chem Soc 70:4320Google Scholar
  39. Kinsey RA, Smith KA, Kirkpatrick RJ, Oldfield E (1982) High resolution NMR of feldspars and feldspar glasses. Geol Soc Am Abstr with Progr 14:530Google Scholar
  40. Kracek FC (1930) The cristobalite liquidus in the alkali oxide-silica systems and the heat of fusion of cristobalite. J Am Chem Soc 52:1436–1443Google Scholar
  41. Krupka KM, Robie RA, Hemingway, BS (1979) High-temperature heat capacities of corundum, periclase, anorthite, CaAl2Si2O8 glass, muscovite, pyrophyllite, KAlSi3O8 glass, grossular, and NaAlSi3O8 glass. Am Mineral 64:86–101Google Scholar
  42. Levin EM, Robbins CR, McMurdie HF (1964) Phase Diagrams for Ceramists. Columbus, Ohio: Am Ceram Soc, pp 601Google Scholar
  43. Levin EM, Robbins CR, McMurdie HF (1969) Phase Diagrams for Ceramists, 1969 Supplement. Columbus, Ohio: Am Ceram Soc, pp 625Google Scholar
  44. Lewis GN, Randall M (1961) Thermodynamics. Revised by KS Pitzer, L Brewer. New York: McGraw-Hill, pp 723Google Scholar
  45. Licko T, and Danek V (1982) Densities of melts in the system CaSiO3-CaMgSi2O6-Ca2MgSi2O7. Phys Chem Glass 23:67–71Google Scholar
  46. Mah, AD (1960) Thermodynamic properties of manganese and its compounds. US Bur Mines Rep Invest 5600, pp 34Google Scholar
  47. Masson CR (1977) Anionic constitution of glass-forming melts. J Non-Cryst Sol 25:3–41Google Scholar
  48. Matson DW, Sharma SK, Philpotts JA (1983) The structure of high-silica alkalisilicate glasses — a Raman spectroscopic investigation. J Non-Cryst Sol (in press)Google Scholar
  49. Mo X, Carmichael ISE, Rivers M, Stebbins J (1982) The partial molar volume of Fe2O3 in multicomponent silicate liquids and the pressure dependence of oxygen fugacity in magmas. Mineral Mag 45:237–245Google Scholar
  50. Moynihan CT, Eastal AJ, Tran DC, Wilder JA, Donovan EP (1976) Heat capacity and structural relaxation of mixed-alkali glasses. J Am Ceram Soc 59:137–140Google Scholar
  51. Navrotsky A, Hon R, Weill DF, Henry DJ (1980) Thermochemistry of glasses and liquids in the systems CaMgSi2O6-Ca Al2Si2O8-NaAlSi3O8, SiO2-CaAl2Si2O8-NaAlSi3O8 and SiO2-Al2O3-CaO-Na2O. Geochim Cosmochim Acta 44:1409–1423Google Scholar
  52. Navrotsky A, Geisinger K, Gibbs GV (1983) Local bonding constraints in aluminosilicate glasses: inferences from molecular orbital calculations and thermochemical systematics. Geol Soc Am Abstr with Progr 15:651Google Scholar
  53. Naylor BF (1945) High temperature heat contents of sodium metasilicate and sodium disilicate. J Am Chem Soc 67:466–467Google Scholar
  54. Orr RL (1953) High temperature heat contents of magnesium orthosilicate and ferrous orthosilicate. J Am Chem Soc 75:528–529Google Scholar
  55. Proks I, Eliasova M, Kosa L (1977) The heat of fusion of akermanite. Silikaty 21:3–9Google Scholar
  56. Richet P (1982) Propriétés thermodynamiques des silicates fondus. Doctoral thesis, Universtité de Paris VIIGoogle Scholar
  57. Richet P (1983) Viscosity and configurational entropy of silicate melts. Geochim Cosmochim Acta (in press)Google Scholar
  58. Richet P, Bottinga Y (1980) Heat capacities of liquid silicates: new measurements on NaAlSi3O8 and K2Si4O9. Geochim Cosmochim Acta 44:1535–1541Google Scholar
  59. Richet P, Bottinga Y (1982) Modeles de calcul des capacités calorifiques des verres et liquides silicates. CR Acad Sci Paris 295:Ser 2, 1121–1124Google Scholar
  60. Richet P, Bottinga Y (1983a) Glass transitions and thermodynamic properties of amorphous SiO2, NaAlSinO2n+2, and KAlSi3O8. Geochim Cosmochim Acta (in press)Google Scholar
  61. Richet P, Bottinga Y (1983b) Anorthite, andesine, wollastonite, diopside, cordierite and pyrope: thermodynamics of melting, glass transitions, and the properties of the amorphous phases. Earth Planet Sci Lett (in press)Google Scholar
  62. Richet P, Bottinga Y (1983a) Glass transitions and thermodynamic Bull Minéral: 106:147–168Google Scholar
  63. Richet P, Bottinga Y, Denielou L, Petitet JP, Tequi C (1982) Thermodynamic properties of quartz, cristobalite and amorphous SiO2: drop calorimetry measurements between 1000 and 1800 K and a review from 0 to 2000 K. Geochim Cosmochim Acta 46:2639–2658CrossRefGoogle Scholar
  64. Richet P, Bottinga, Y, Tequi, C (1983) Heat capacity of sodium silicate liquids. J Am Ceram Soc (in press)Google Scholar
  65. Robie RA, Hemingway BS, Fisher JR (1979) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperature. US Geol Surv Bull 1452, revised editionGoogle Scholar
  66. Sack RO, Carmichael ISE, Rivers M, Ghiorso MS (1980) Ferric-ferrous equilibria in natural silicate liquids at 1 bar. Contrib Mineral Petrol 75:369–376Google Scholar
  67. Shannon RD, Prewitt CT (1969) Effective ionic radii in oxides and fluorides. Acta Crystallogr 925–946Google Scholar
  68. Sharma SK, Virgo D, Mysen B (1978) Structure of melts along the join SiO2-NaAlSiO4 by Raman spectroscopy. Carnegie Inst Wash Yearb 77:652–658Google Scholar
  69. Shelby JE (1976) Thermal expansion of mixed-alkali silicate glasses. J Appl Phys 47:4489–4496Google Scholar
  70. Schweite HE, Ziegler G (1955) Beitrag zur specifischen warme der Glaser. Glastech Ber 28:137–146Google Scholar
  71. Stebbins JF, Carmichael ISE, Weill DF (1981) Heats of fusion of diopside and sanidine and high pressure volume changes in aluminous silicate liquids. Geol Soc Am Abstr with Progr 13:560Google Scholar
  72. Stebbins JS, Carmichael ISE (1983) The heat of fusion of fayalite. Am Mineral (in press)Google Scholar
  73. Stebbins JF, Weill DF, Carmichael ISE (1982) High temperature heat contents and heat capacities of liquids and glasses in the system NaAlSi3O8-CaAl2Si2O8. Contrib Mineral Petrol 80:276–284Google Scholar
  74. Stebbins JF, Carmichael ISE, Weill, DF (1983) The high temperature liquid and glass heat contents and the heats of fusion of diopside, albite, sanidine, and nepheline. Am Mineral 68:717–730Google Scholar
  75. Stout ND, Piwinskii AJ (1980b) The enthalpy (H T-H 298) of anhydrous silicate melts from 1520 to 2600 K. Lawrence Livermore Lab, Univ California, Livermore, CA, UCRL-52978Google Scholar
  76. Stull DR, Prophet H (1971) JANAF Thermochemical Tables. US Nat Bur Stand, Nat Stand Ref Data Ser 37, pp 1141Google Scholar
  77. Takahashi K, Yoshio T (1973) Thermodynamic quantities of alkali silicates in the temperature range from 25° C to melting point. Yogyo Kyokai Shi 81:524–533Google Scholar
  78. Taylor TD, Rindone GE (1970) Properties of soda aluminosilicate glasses. V, Low temperature viscosities. J Am Ceram Soc 53:692–695Google Scholar
  79. Teixeira J, Stanley HE, Bottinga Y, Richet P (1983) Application of a percolation model to supercooled liquids with a tetrahedral structure. Bull Mineral 106:99–105Google Scholar
  80. Tomlinson JW, Heynes MSR, and Bockris JO (1958) The structure of liquid silicates, part 2 — molar volumes and expansivities. Trans Faraday Soc 54:1822–1833Google Scholar
  81. Toop GW, Samis CS (1962) Some new ionic concepts of silicate slags. Can Met Quart 1:129–152Google Scholar
  82. Wagner H (1932) Zur thermochemie der metasilikate des Calciums und Magnesiums und des Diopsids. Z Anorg Allg Chem 208:1–20Google Scholar
  83. Waseda Y (1980) The Structure of Non-Crystalline Materials. New York: McGraw-Hill, pp 326Google Scholar
  84. Weill DF, Stebbins JF, Hon R, Carmichael ISE (1980b) The enthalpy of fusion of anorthite. Contrib Mineral Petrol 74:95–102Google Scholar
  85. White WP (1919) Silicate specific heats. Am J Sci 47:1–44Google Scholar
  86. Winklemann A (1893) Über die spezifische Wärme verscheiener zusammengesetzter Glaser. Ann Phys Chem 49:401–420Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • J. F. Stebbins
    • 1
  • I. S. E. Carmichael
    • 2
  • L. K. Moret
    • 1
  1. 1.Earth Sciences DivisionLawrence Berkeley LaboratoryBerkeleyUSA
  2. 2.Department of Geology and GeophysicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations