Advertisement

Archives of Microbiology

, Volume 163, Issue 2, pp 112–118 | Cite as

Enzymes and coenzymes of the carbon monoxide dehydrogenase pathway for autotrophic CO2 fixation in Archaeoglobus lithotrophicus and the lack of carbon monoxide dehydrogenase in the heterotrophic A. profundus

  • Julia Vornolt
  • Jasper Kunow
  • Karl O. Stetter
  • Rudolf K. Thauer
Original Paper

Abstract

Archaeoglobus lithotrophicus is a hyperthermophilic Archaeon that grows on H2 and sulfate as energy sources and CO2 as sole carbon source. The autotrophic sulfate reducer was shown to contain all the enzyme activities and coenzymes of the reductive carbon monoxide dehydrogenase pathway for autotrophic CO2 fixation as operative in methanogenic Archaea. With the exception of carbon monoxide dehydrogenase these enzymes and coenzymes were also found in A. profundus. This organism grows lithotrophically on H2 and sulfate, but differs from A. lithotrophicus in that it cannot grow autotrophically: A. profundus requires acetate and CO2 for biosynthesis. The absence of carbon monoxide dehydrogenase in A. profundus is substantiated by the observation that this organism, in contrast to A. lithotrophicus, is not mini-methanogenic and contains only relatively low concentrations of corrinoids.

Key words

Methanofuran Tetrahydromethanopterin Coenzyme F420 Corrinoids Cytochromes Autotrophic CO2 fixation Dissimilatory sulfate reduction Archaeoglobus species Methanogenic Archaea 

Abbreviations

F420

coenzyme F420

MFR

methanofuran

CHO-MFR

formylmethanofuran

H4MPT

5,6,7,8-tetrahydromethanopterin

CHO−H4MPT N5

formyl-H4MPT

CH≡H4MPT+N5

methenyl-H4MPT

CH2=H4MPT N5, N10

methylene-H4MPT

CH3−H4MPT N5

methyl-H4MPT

H4F

tetrahydrofolate

I U

1 μmol/min

td

doubling time

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achenbach-Richter L, Stetter KO, Woese CR (1987) A possible biochemical missing link among archaebacteria. Nature 327: 348–349CrossRefGoogle Scholar
  2. Bernt E, Bergmeyer HU (1974) Isocitrate-dehydrogenase. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse, vol 1. Chemie, Weinheim, pp 587–590Google Scholar
  3. Boone DR, Whitman WB, Rouvière P (1993) Diversity and taxonomy of methanogens. In: Ferry JG (ed) Methanogenesis, Chapman & Hall, New York London, pp 35–80Google Scholar
  4. Börner G, Karrasch M, Thauer RK (1989) Formylmethanofuran dehydrogenase activity in cell extracts of Methanobacterium thermoautotrophicum and of Methanosarcina barkeri. FEBS Lett 244:21–25Google Scholar
  5. Bott MH, Eikmanns B, Thauer RK (1985) Defective formation and/or utilization of carbon monoxide in H2/CO2 fermenting methanogens dependent on acetate as carbon source. Arch Microbiol 143:266–269Google Scholar
  6. Brandis A, Thauer RK (1981) Growth of Desulfovibrio species on hydrogen and sulphate as sole energy source. J Gen Microbiol 126:249–252Google Scholar
  7. Breitung J, Schmitz RA, Stetter KO, Thauer RK (1991) N 5,N10-Methenyltetrahydromethanopterin cyclohydrolase from the extreme thermophile Methanopyrus kandleri: increase of catalytic efficiency (kcat/KM) and thermostability in the presence of salts. Arch Microbiol 156:517–524Google Scholar
  8. Breitung J, Börner G, Scholz S, Linder D, Stetter KO, Thauer RK (1992) Salt dependence, kinetic properties and catalytic mechanism of N-formylmethanofuran: tetrahydromethanopterin formyltransferase from the exreme thermophile Methanopyrus kandleri. Eur J Biochem 210:971–981PubMedGoogle Scholar
  9. Burggraf S, Jannasch HW, Nicolaus B, Stetter KO (1990) Archaeoglobus profundus sp. nov., represents a new species within the sulfate-reducing archaebacteria. System Appl Microbiol 13: 24–28Google Scholar
  10. Choquet CG, Richards JC, Patel GB, Sprott GD (1994) Purine and pyrimdine biosynthesis in methanogenic bacteria. Arch Microbiol 161:471–480Google Scholar
  11. Dahl C, Koch H-G, Keuken O, Trüper HG (1990) Purification and characterization of ATP sulfurylase from the extremely thermophilic archaebacterial sulfate-reducer, Archaeoglobus fulgidus. FEMS Microbiol Lett 67:27–32Google Scholar
  12. Dahl C, Kredich NM, Deutzmann R, Trüper HG (1993) Dissimilatory sulphite reductase from Archaeoglobus fulgidus: physicochemical properties of the enzyme and cloning, sequencing and analysis of the reductase genes. J Gen Microbiol 139:1817–1828Google Scholar
  13. DiMarco AA, Bobik TA, Wolfe RS (1990) Unusual coenzymes of methanogenesis. Annu Rev Biochem 59:355–394Google Scholar
  14. Donnelly MI, Wolfe RS (1986) The role of formylmethanofuran:terahydromethanopterin formyltransferase in methanogenesis from carbon dioxide. J Biol Chem 261:16653–16659Google Scholar
  15. Ekiel I, Smith ICP, Sprott GD (1983) Biosynthetic pathways in Methanospirillum hungatei as determined by 13C nuclear magnetic resonance. J Bacteriol 156:316–326Google Scholar
  16. Ekiel I, Sprott GD, Patel GB (1985) Acetate and CO2 assimilation by Methanothrix concilii. J Bacteriol 162:905–908PubMedGoogle Scholar
  17. Escalante-Semerena JC, Rinehart KL, Wolfe RS (1984) Tetrahydromethanopterin, a carbon carrier in methanogenesis. J Biol Chem 259:9447–9455Google Scholar
  18. Feny JG (1993) Fermentation of acetate. In: Ferry JG (ed) Methanogenesis. Chapman & Hall, New York London, pp 304–334Google Scholar
  19. Fischer R, Gärtner P, Yeliseev A, Thauer RK (1992) N 5-Methyltetra-hydromethanopterin: coenzyme M methyltransferase in methanogenic archaebacteria is a membrane protein. Arch Microbiol 158:208–217PubMedGoogle Scholar
  20. Friedrich B, Schwartz E (1993) Molecular biology of hydrogen utilization in aerobic chemolithotrophs. Annu Rev Microbiol 47:351–383Google Scholar
  21. Fuchs G (1989) Alternative pathways of autotrophic CO2 fixation. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Science Tech, Madison, and Springer, Berlin New York, pp 365–382Google Scholar
  22. Gorris LGM, Voet ACWA, Drift C van der (1991) Structural characteristics of methanogenic cofactors in the non-methanogenic archaebacterium Archaeoglobus fulgidus. BioFactors 3:29–35PubMedGoogle Scholar
  23. Grahame DA (1991) Catalysis of acetyl-CoA cleavage and tetrahydrosarcinapterin methylation by a carbon monoxide dehydrogenase-corrinoid enzhme complex. J Biol Chem 266: 22227–22233PubMedGoogle Scholar
  24. Huber H, Thomm M, König H, Thies G, Stetter KO (1982) Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen. Arch Microbiol 132:47–50Google Scholar
  25. Klein AR, Breitung J, Linder D, Stetter KO, Thauer RK (1993) N 5, N10-Methenyltetrahydromethanopterin cyclohydrolase from the extremely thermophilic sulfate reducing Archaeoglobus fulgidus: comparison of its properties with those of the cyclohydrolase from the extremely thermophilic Methanopyrus kandleri. Arch Microbiol 159:213–219Google Scholar
  26. Kräutler B, Kohler H-PE, Stupperich E (1988) 5-Methylbenzimidazolyl-cobamides are the corrinoids from some sulfate-reducing and sulfur-metabolizing bacteria. Eur J Biochem 176:461–469Google Scholar
  27. Krone UE, McFarlan SC, Hogenkamp HPC (1994) Purification and partial characterization of a putative thymidylate synthase from Methanobacterium thermoautotrophicum. Eur J Biochem 220:789–794Google Scholar
  28. Kunow J, Schwörer B, Setzke E, Thauer RK (1993a) Si-face stereospecificity at C5 of coenzyme F420 for F420-dependent N 5, N10-methylenetetrahydromethanopterin dehydrogenase, F420-dependent N 5, N10-methylenetetrahydromethanopterin reductase and F420H2:dimethylnaphthoquinone oxidoreductase. Eur J Biochem 214:641–646PubMedGoogle Scholar
  29. Kunow J, Schwörer B, Stetter KO, Thauer RK (1993b) A F420-dependent NADP reductase in the extremely thermophilic sulfate-reducing Archaeoglobus fulgidus. Arch Microbiol 160: 199–205Google Scholar
  30. Kunow J, Linder D, Stetter KO, Thauer RK (1994) F420H2:quinone oxidoreductase from Archaeoglobus fulgidus: characterization of a membrane-bound multisubunit complex containing FAD and iron-sulfur clusters. Eur J Biochem 223:503–511Google Scholar
  31. Kurr M, Huber R, König H, Jannasch HW, Fricke H, Trincone A, Kristjansson JK, Stetter KO (1991) Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110°C. Arch Microbiol 156:239–247Google Scholar
  32. Lampreia J, Fauque G, Speich N, Dahl C, Moura I, Trüper HG, Moura JJG (1991) Spectroscopic studies on APS reductase isolated from the hyperthermophilic sulfate-reducing archaebacterium Archaeoglobus fulgidus. Biochem Biophys Res Commun 181:342–347Google Scholar
  33. Länge S, Fuchs G (1987) Autotrophic synthesis of activated acetic acid from CO2 in Methanobacterium thermoautotrophicum. Eur J Biochem 163:147–154Google Scholar
  34. Länge S, Scholtz R, Fuchs G (1989) Oxidative and reductive acetyl CoA/carbon monoxide dehydrogenase pathway in Desulfobacterium autotrophicum. Arch Microbiol 151:77–83Google Scholar
  35. Ma K, Thauer RK (1990) Purification and properties of N 5,N10-methylenetetrahydromethanopterin reductase from Methanobacterium thermoautotrophicum (strain Marburg). Eur J Biochem 191:187–193Google Scholar
  36. Möller-Zinkhan D, Thauer RK (1990) Anaerobic lactate oxidation to 3 CO2 by Archaeoglobus fulgidus via the carbon monoxide dehydrogenase pathway: demonstration of the acetyl-CoA carbon-carbon cleavage reaction in cell extracts. Arch Microbiol 153:215–218Google Scholar
  37. Möller-Zinkhan D, Börner G, Thauer RK (1989) Function of methanofuran, tetrahydromethanopterin, and coenzyme F420 in Archaeoglobus fulgidus. Arch Microbiol 152:362–368Google Scholar
  38. Peck HD (1993) Bioenergetic strategies of the sulfate-reducing bacteria. In: Odom JM, Singleton R (eds) The sulfate-reducing bacteria: contemporary perspectives. Springer, Berlin New York, pp 41–76Google Scholar
  39. Qiu D, Kumar M, Ragsdale SW, Spiro TG (1994) Nature's carbonylation catalyst: raman spectroscopic evidence that carbon monoxide binds to iron, not nickel, in CO dehydrogenase. Science 264:817–819Google Scholar
  40. Ragsdale SW (1991) Enzymology of the acetyl-CoA pathway of CO2 fixation. Crit Rev Biochem Mol Biol 26:261–300Google Scholar
  41. Schauder R, Eikmanns B, Thauer RK, Widdel F, Fuchs G (1986) Acetate oxidation to CO2 in anaerobic bacteria via a novel pathway not involving reactions of the citric acid cycle. Arch Microbiol 145:162–172Google Scholar
  42. Schauder R, Preuß A, Jetten M, Fuchs G (1989) Oxidative and reductive acetyl CoA/carbon monoxide dehydrogenase pathway in Desulfobacterium autotrophicum. 2. Demonstration of the enzymes of the pathway and comparison of CO dehydrogenase. Arch Microbiol 151:84–89Google Scholar
  43. Schmitz RA, Linder D, Stetter KO, Thauer RK (1991) N 5,N10-Methylenetetrahydromethanopterin reductase (coenzyme F420-dependent) and formylmethanofuran dehydrogenase from the hyperthermophile Archaeoglobus fulgidus. Arch Microbiol 156:427–434Google Scholar
  44. Schwörer B, Breitung J, Klein AR, Stetter KO, Thauer RK (1993) Formylmethanofuran:tetrahydromethanopterin formyltransferase and N 5,N10-methylenetetrahydromethanopterin dehydrogenase from the sulfate-reducing Archaeoglobus fulgidus: similarities with the enzymes from methanogenic Archaea. Arch Microbiol 159:225–232Google Scholar
  45. Setzke E, Hedderich R, Heiden S, Thauer RK (1994) H2:heterodisulfide oxidoreductase complex from Methanobacterium thermoautotrophicum: composition and properties. Eur J Biochem 220:139–148Google Scholar
  46. Smith L (1978) Bacterial cytochromes and their spectral characterization. In: Fleischer S, Packer L (eds) Biomembranes Methods Enzymol 53:202–212Google Scholar
  47. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goecke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85Google Scholar
  48. Speich N, Trüper HG (1988) Adenylylsulphate reductase in a dissimilatory sulphate-reducing archaebacterium. J Gen Microbiol 134:1419–1425Google Scholar
  49. Speich N, Dahl N, Heisig P, Klein A, Lottspeich F, Stetter KO, Trüper HG (1994) Adenylylsulfate reductase from the sulfate-reducing archaeon Archaeoglobus fulgidus: cloning and characterization of the genes and comparison of the enzyme with other iron-sulphur flavoproteins. Microbiology 140:1273–1284Google Scholar
  50. Stetter KO (1988) Archaeoglobus fulgidus gen. nov., sp. nov.: a new taxon of extremely thermophilic archaebacteria. System Appl Microbiol 10:171–173Google Scholar
  51. Stetter KO (1992) The genus Archaeoglobus. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes, 2nd edn, vol 1. Springer, Berlin New York, pp 707–711Google Scholar
  52. Stetter KO, Lauerer G, Thomm M, Neuner A (1987) Isolation of extremely thermophilic sulfate reducers: evidence for a novel branch of Archaebacteria. Science 236:822–824Google Scholar
  53. Stetter KO, Huber R, Blöchl E, Kurr M, Eden RD, Fleider M, Cash H, Vance I (1993) Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365: 743–745Google Scholar
  54. Terlesky KC, Nelson MJK, Ferry JG (1986) Isolation of an enzyme complex with carbon monoxide dehydrogenase activity containing corrinoid and nickel from acetate-grown Methanosarcina thermophila. J Bacteriol 168:1053–1058Google Scholar
  55. Thauer RK, Kunow J (1994) Sulfate-reducing Archaea. In: Barton LL (ed) Biotechnology handbooks: sulfate-reducing bacteria. Plenum, New York London Washington (in press)Google Scholar
  56. Thauer RK, Möller-Zinkhan D, Spormann AM (1989) Biochemistry of acetate catabolism in anaerobic chemotrophic bacteria. Annu Rev Microbiol 43:43–67PubMedGoogle Scholar
  57. Tindall BJ, Stetter KO, Collins MD (1989) A novel, fully saturated menaquinone from the thermophilic sulphate-reducing Archaebacterium Archaeoglobus fulgidus. J Gen Microbiol 135:693–696Google Scholar
  58. Weimer PJ, Zeikus JG (1979) Acetate assimilation pathway of Methanosarcina barkeri. J Bacteriol 137:332–339PubMedGoogle Scholar
  59. White RH (1988) Structural diversity among methanofurans from different methanogenic bacteria. J Bacteriol 170:4594–4597Google Scholar
  60. White RH (1991) Distribution of folates and modified folates in extremely thermophilic bacteria. J Bacteriol 173:1987–1991PubMedGoogle Scholar
  61. Widdel F (1988) Microbiology and ecology of sulfate-and sulfureducing bacteria. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 469–585Google Scholar
  62. Woese CR, Achenbach L, Rouvière P, Mandelco L (1991) Archaeal phylogeny: reexamination of the phylogenetic position of Archaeoglobus fulgidus in light of certain composition-induced artifacts. System Appl Microbiol 14:364–371Google Scholar
  63. Zeikus JG, Fuchs G, Kenealy W, Thauer RK (1977) Oxidoreductases involved in cell carbon synthesis of Methanobacterium thermoautotrophicum. J Bacteriol 132:604–613Google Scholar
  64. Zellner G, Stackebrandt E, Kneifel H, Messner P, Sleytr UB, Conway de Macario E, Zabel H-P, Stetter KO, Winter J (1989) Isolation and characterization of a thermophilic, sulfate reducing archaebacterium, Archaeoglobus fulgidus strain Z. System Appl Microbiol 11:151–160Google Scholar
  65. Zirngibl C, Hedderich R, Thauer RK (1990) N 5,N10-Methylenetetrahydromethanopterin dehydrogenase from Methanobacterium thermoautotrophicum has hydrogenase activity. FEBS Lett 261:112–116Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Julia Vornolt
    • 1
  • Jasper Kunow
    • 1
  • Karl O. Stetter
    • 2
  • Rudolf K. Thauer
    • 1
  1. 1.Laboratorium für Mikrobiologie des Fachbereichs Biologie der Philipps-Universität und Max-Planck-Institut für terrestrische MikrobiologieMarburgGermany
  2. 2.Lehrstuhl für MikrobiologieUniversität RegensburgRegensburgGermany

Personalised recommendations