The shear strength of trabecular bone from the femur, and some factors affecting the shear strength of the cement-bone interface

  • M. Halawa
  • A. J. C. Lee
  • R. S. M. Ling
  • S. S. Vangala


The shear strength of trabecular bone from the femur has been studied. In general, the strongest trabecular bone is found close to the cortico-cancellous junction, though its shear strength depends also on the relationship of the trabeculae to the plane of shear. Some factors affecting the shear strength of the cement-bone interface have been investigated. In vitro, maximal cement-bone interface shear strength is obtained by exposing and thoroughly cleaning strong trabecular bone, and then forcing onto it under pressure low viscosity cement.


Public Health Viscosity Shear Strength Trabecular Bone Interface Shear 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Die Scherkräfte der Knochentrabekel des Femur wurden untersucht. Im allgemeinen wird der stärkste travikuläre Knochen nahe des corticospongiösen Überganges gefunden, wobei jedoch die Scherkraft zusätzlich von dem Verhältnis der Knochentrabekel zur Ebene, in der die Scherkräfte wirken, abhängt. Einige Faktoren, die die Scherkraft an der Zementknochengrenze beeinflussen, wurden untersucht. In vitro wird die größte Scherkraft an der Zementknochengrenze erreicht durch Freilegen und gründliches Säubern des starken travikulären Knochens und anschließend durch Einpressen von Zement mit niedriger Viskosität.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Behrens, J. C., Walker, P. S., Shoji, H.: Variations in strength and structure of cancellous bone at the knee. J. Biomechanics 7, 201 (1974)Google Scholar
  2. Charnley, J.: The reaction of bone to self curing acrylic cement. J. Bone Jt. Surg. 52 B, 340 (1970)Google Scholar
  3. Corkhill, J. A., Croute, D. G., James, M. L., Ling, R. S. M.: Methylmethacrylate metabolism in man. The hydrolysis of methylmethacrylate to methacrylic acid during total hip replacement. (in press, 1978)Google Scholar
  4. Ducheyne, P., Heymans, L., Martens, M., Aernoudt, E., de Meester, P., Mulier, J. C.: The mechanical behaviour of intra-condylar cancellous bone of the femur at different loading rates. J. Biomechanics 10, 747 (1977)Google Scholar
  5. Fitzgerald, E. R.: Dynamic mechanical measurements during the life to death transition in animal tissues. Biorheology 12, 397–408 (1975)Google Scholar
  6. Fitzgerald, E. R.: Postmortem transition in the dynamic mechanical properties of the bone. Med. Physics 4, 49–53 (1977)Google Scholar
  7. Freeman, M. A. R.: The pathogenesis of primary osteoarthritis. In: Modern Trends in Orthopaedics, Vol. 6, A. G. Apley, ed. London: Butterworth's 1972Google Scholar
  8. Galante, J., Rostoker, W., Ray, R. D.: The physical properties of trabecular bone. Calc. Tissue Res. 5, 236 (1970)PubMedGoogle Scholar
  9. Greenwald, A. S., Wilde, A. H.: Some observations on the interface strength of bone cement. Biomechanics Laboratory Research Report, 002-74, The Cleveland Clinic Foundation 1974Google Scholar
  10. Guy, J. G., Jamieson-Evans, D. C., Park, W. M., Rannie, I., Charnley, J.: A long-term micro-focal, radiological and histological study of the reaction of bone to acrylic cement. J. Bone Jt. Surg. 57 B, 113 (1975)Google Scholar
  11. Homsy, C. A.: Prosthesis seating compounds of rapid cure acrylic polymer. Paper read at the National Academy of Science and American Academy of Orthopaedic Surgeons Joint Workshop On Total Hip Replacement and Skeletal Attachment 1969Google Scholar
  12. Homsy, C. A., Tullos, H. S., Anderson, M. S., Differante, N. M., King, J. W.: Some physiological aspects of prosthesis stabilisation with acrylic polymer. Clin. Orthop. 83, 317 (1972)Google Scholar
  13. Jefferiss, C. D., Lee, A. J. C., Ling, R. S. M.: Thermal aspects of self-curing polymethylmethacrylate. J. Bone Jt. Surg. 57B, 511 (1975)Google Scholar
  14. Kolbel, R., Bergmann, G., Rohlmann, A.: Dynamic properties of the bone-cement bond. Paper read at 3rd Annual Meeting of the Society for Biomaterials. New Orleans 1977Google Scholar
  15. Lee, A. J. C., Ling, R. S. M.: A device to improve the extrusion of bone cement into the bone of the acetabulum in the replacement of the hip joint. Biomed. Engineering 9, 1 (1974)Google Scholar
  16. Linder, L.: Reaction of bone to the acute chemical trauma of bone cement. J. Bone Jt. Surg. 59 A, 82 (1977)Google Scholar
  17. Markolf, K. C., Amstutz, H. C.: Penetration and flow of acrylic bone cement. Clin. Orthop. 121, 99 (1976)Google Scholar
  18. Miller, J., Burke, D. L., Stachiewicz, J., Ahmed, A., Kelebay, L.: Loosening of arthroplastic components as a result of blood clot interposed between P.M.M.A. and bone at the time of surgery. Paper read at the 23rd Annual Meeting of The Orthopaedic Research Society, Las Vegas 1977Google Scholar
  19. Miller, J., Tremblay, G. R., Burke, D. L., Ahmed, A., Kelebay, L. C.: The injection of acrylic cement into cancellous bone as a method for the prevention of loosening of arthroplasty components. Paper read at the 24th Annual Meeting of the Orthopaedic Research Society, Dallas 1978Google Scholar
  20. Modig, J.: Studies of the Aetiology and Nature of the Pulmonary and Circulatory Reactions during Total Hip Replacement. Doctoral Thesis at Uppsala University 1975Google Scholar
  21. Pugh, J. W., Rose, R. M., Rodin, E. L.: Elastic and Viscoelastic properties of trabecular bone; dependance on structure. J. Biomechanics 6, 475 (1973)Google Scholar
  22. Singh, M., Riggs, B. L., Beabout, J. W., Jowsey, J.: Femoral Trabecular pattern index for Evaluation of Spinal Osteoporosis. Mayo Clinic Proceedings 48, 184 (1973)Google Scholar
  23. Swanson, S. A. V., Freeman, M. A. R.: Is bone hydraulically strengthened? Med. Biol. Enging. 4, 433 (1966)Google Scholar
  24. Vernon-Roberts, B., Freeman, M. A. R.: Morphological and Analytical Studies of the Tissues adjacent to joint prosthesis: Investigations into the causes of loosening of prosthesis. In: Advances in Artificial Hip and Knee Joint Technology, M. Schaldach, D. Hohmann, eds. Berlin-Heidelberg-New York: Springer 1976Google Scholar
  25. Walker, P. S., Bienenstock, M.: Fixation Properties of acrylic cement. Rev. Hosp. Spec. Surg. 1, 27 (1970)Google Scholar
  26. Walker, T. W., Graham, J. D., Mills, R. H.: Changes in the Mechanical Behaviour of the Human Femoral Head Associated with Arthritic Pathology. J. Biomech. 9, 615 (1976)Google Scholar
  27. Willert, J.-G., Ludwig, J., Semlisch, M.: Reaction of Bone to methacrylate after hip arthroplasty. J. Bone Jt. Surg. 56 A, 1368 (1974)Google Scholar

Copyright information

© J. F. Bergmann Verlag 1978

Authors and Affiliations

  • M. Halawa
    • 2
  • A. J. C. Lee
    • 1
  • R. S. M. Ling
    • 2
  • S. S. Vangala
    • 1
  1. 1.Department of Engineering ScienceUniversity of ExeterEngland
  2. 2.Princess Elizabeth Orthopaedic HospitalExeterEngland

Personalised recommendations