Advertisement

Current Genetics

, Volume 9, Issue 7, pp 579–586 | Cite as

Identification of mutations preventing n-hexadecane uptake among 26 n-alkane non-utilizing mutants of Yarrowia (Saccharomycopsis) lipolytica

  • John B. Bassel
  • Robert K. Mortimer
Article

Summary

Genetic analyses of n-alkane non-utilizing mutants of the yeast Yarrowia (Saccharomycopsis) lipolytica were continued. By analyses of inter-mutant complementation and recombination a total of 26 genetic loci have been identified. Mutations representing these loci have phenotypes characteristic of defects in substrate uptake or in one or more of the enzymatic activities making up the hydroxylase complex. Tests of 14C n-hexadecane uptake by a set of alkane-negative mutants representing the 26 loci show that 16 of the mutations cause a significant reduction in n-alkane uptake. N-alkane uptake by Y. lipolytica is shown to be inducible and to be inhibited by the metabolic poisons 2–4 dinitrophenol and KCN. The latter observation indicates that n-alkane uptake of Y. lipolytica is due to active transport.

Key words

Y. lipolytica n-Alkanes Mutants Uptake 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armitt S, McCullough W, Roberts CF (1976) J Gen Microbiol 92:263–282Google Scholar
  2. Bassel JB, Mortimer RK (1982) Curr Genet 5:77–88Google Scholar
  3. Douglas HC, Hawthorne DC (1972) J Bacteriol 109:1139–1143Google Scholar
  4. Gilewicz M, Zacek M, Bertrand JC, Azoulay E (1978) Can J Microbiol 25:201–206Google Scholar
  5. Goma G, Parielleux A, Durand G (1973) J Ferment Technol 51:616–618Google Scholar
  6. Hug H, Blanch HW, Fiechter A (1974) Biotechnol Bioeng 16:965–985Google Scholar
  7. Kappelli O, Fiechter A (1980) Biotechnol. Bioeng 22:1829–1841Google Scholar
  8. Kappelli O, Muller M, Fiechter A (1978) J Bacteriol 133:952–958Google Scholar
  9. Kawamoto S, Nozaki C, Tanaka A, Fukui S (1978) Eur J Biochem 83:609–613Google Scholar
  10. Lebeault JM, Roche B, Duvnjak Z, Azoulay E (1970) Biochem Biophys Acta 220:373–379Google Scholar
  11. Lehninger AL (1975) Biochemistry, 2nd edn. Worth, p 495, p 519Google Scholar
  12. Liu CM, Johnson M (1971) J Bacteriol 106:830–834Google Scholar
  13. Miura Y, Okazaki M, Hamada SI, Masakawa SI, Yugen (1977) Biotechnol Bioeng 19:701–714Google Scholar
  14. Munk V, Dostalek M, Volfova O (1969) Biotechnol Bioeng 11:383–391Google Scholar
  15. Ogrydziak D, Bassel J, Contopoulou R, Mortimer R (1978) Mol Gen Genet 163:229–239Google Scholar
  16. Ogrydziak D, Bassel J, Mortimer R (1978) Mol Gen Genet 188:179–183Google Scholar
  17. Ogrydziak DM, Mortimer RK (1977) Genetics 87:621–632Google Scholar
  18. Osumi M, Miwa N, Tanaka Y, Fukui S (1974) Arch Microbiol 99:181–184Google Scholar
  19. Reddy P, Singh H, Roy P, Baruah J (1982) Biotechnol Bioeng 24:1241–1269Google Scholar
  20. Yanagashima N (1978) Bot Mag Tokyo Special Issue 1:61–81Google Scholar
  21. Yorifugi T (1978) n-alkane oxidation by Saccharomycopsis lipolytica. PhD Thesis, Massachusetts Institute of TechnologyGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • John B. Bassel
    • 1
  • Robert K. Mortimer
    • 1
  1. 1.Donner LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations