Advertisement

Oecologia

, Volume 24, Issue 4, pp 323–334 | Cite as

Environmental control of crassulacean acid metabolism in Welwitschia mirabilis Hook. Fil. in its range of natural distribution in the Namib desert

  • E. D. Schulze
  • H. Ziegler
  • W. Stichler
Article

Summary

Within the area of its natural distribution in South West Africa, Welwitschia mirabilis has a less negative δ13C value than C3 plants and a more negative δ13C value than C4 species. This indicates that Welwitschia m. assimilates CO2 partially via CAM when growing in its natural habitat. The difference between the δ13C values of Welwitschia m. and of the C3 species is significant in the savanna, whereas it is only small and statistically not significant in the grassland zone. The proportion of CO2 fixed via CAM is largest in the coastal desert zone. There was no correlation between the δ13C values and the Cl- or ash content of the tissue. Thus, CAM in Welwitschia m. seems not to be induced by salt stress. There is no change in the δ13C values along the persistent Welwitschia m. leaf. The present data indicate that on a broad geographical scale in the area of distribution temperature regime, and water stress as a modifying factor, determine CAM in Welwitschia m. The ecological implications are discussed by comparing the behaviour of Welwitschia m. with other CAM, C3 and C4 species of the accompanying flora.

Keywords

Distribution Temperature Salt Stress Water Stress Acid Metabolism Natural Habitat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Besler, H.: Klimaverhältnisse und klimageomorphologische Zonierung der zentralen Namib (Südwestafrika). Stuttgarter Geographische Studien 83, 1–209 (1972)Google Scholar
  2. Bornmann, C.H.: Welwitschia mirabilis: das widersprüchlichste Gewächs der Namib. Endeavour 11, 95–99 (1972)Google Scholar
  3. Bornmann, C.H., Moran, M.L., Richardson, C.A., Butler, V., Botha, C.E.J., Nash, L.J., Button, J.: Welwitschia mirabilis: observations on cuticular efficiency. A comparative study. Madoqua, Series II, 3, 17–25 (1974)Google Scholar
  4. Dittrich, P., Huber, W.: Carbon dioxide metabolism in members of the Chlamydospermae. In: Proceedings of the Third International Congress on Photosynthesis (M. Avron, ed.), pp. 1573–1578. Amsterdam: Elsevier 1974Google Scholar
  5. Giess, W.: Welwitschia mirabilis Hook. fil. Dinteria 3, 3–56 (1969)Google Scholar
  6. Kers, L.E.: The distribution of Welwitschia mirabilis Hook. f. Svensk Botanisk Tidskrif 61, 97–125 (1967)Google Scholar
  7. Kluge, M., Lange, O.L., Eichmann, M. von, Schmid, R.: Diurnaler Säurerhythmus bei Tillandsia usneoides: Untersuchungen über den Weg des Kohlenstoffs sowie die Abhängigkeit des CO2-Gaswechsels von Lichtintensität, Temperatur und Wassergehalt der Pflanze. Planta (Berl.) 112, 357–372 (1973)Google Scholar
  8. Leyerer, G., Stocker, O.: Über die Transpiration der Rutengewächse. Flora 151, 1–43 (1961)Google Scholar
  9. Meinzer, F.C., Rundel, P.W.: Crassulacean acid metabolism and water use efficiency in Echeveria pumila. Photosynthetica 7, 358–364 (1973)Google Scholar
  10. Napp-Zinn, K.: Encyclopedia of Plant Anatomy. Anatomie des Blattes. I. Gymnospermen. Berlin: Borntraeger 1966Google Scholar
  11. Neales, T.F.: The effect of night temperature on CO2 assimilation, transpiration, and water use efficiency in Agave americana L. Aust. J. biol. Sci. 26, 705–714 (1973)Google Scholar
  12. Neales, T.F.: The gas exchange pattern of CAM plants. In: Environmental and biological control of photosynthesis (R. Marcelle, ed.), pp. 299–310. The Hague: Junk 1975Google Scholar
  13. Osmond, C.B.: Environmental control of photosynthetic options in crassulacean plants. In: Environmental and biological control of photosynthesis (R. Marcelle, ed.), pp. 311–322. The Hague: Junk 1975Google Scholar
  14. Osmond, C.B., Allaway, W.G., Sutton, B.G., Troughton, J.H., Queiroz, O., Lüttge, U., Winter, K.: Carbon isotope discrimination in photosynthesis of CAM plants. Nature (Lond.) 246, 41–42 (1973)Google Scholar
  15. Osmond, C.B., Ziegler, H., Stichler, W., Trimborn, P.: Carbon isotope discrimination in alpine succulent plants supposed to be capable of crasulacean acid metabolism (CAM). Oecologia (Berl.) 18, 209–217 (1975)Google Scholar
  16. Schulze, E.-D., Ziegler, H., Stichler, W.: Der Säurestoffwechsel von Welwitschia mirabilis Hook. Fil. am natürlichen Standort in der Namib Wüste. Verhandlungen der Gesellschaft für Ökologie, Wien, 1975, S. 211–220. The Hague: Junk 1976Google Scholar
  17. Smith, B.N., Brown, H.V.: The kranzsyndrome in the Gramineae as indicated by carbon isotope ratios. Amer. J. Bot. 60, 505–513 (1973)Google Scholar
  18. Smith, B.N., Epstein, S.: Two categories of 13C/12C ratios for higher plants. Plant Physiol. 47, 380–384 (1971)Google Scholar
  19. Ting, I.P., Osmond, C.B.: Multiple forms of plant phosphoenol-pyruvate carboxylase associated with different metabolic pathways. Plant Physiol. 51, 448–453 (1973)Google Scholar
  20. Ting, I.P., Szarek, S.R.: Drought adaptation in crassulacean acid metabolism plants. In: Environmental physiology of desert organisms (N.F. Hadley, ed.), pp. 152–167. Dowden-Hutchinson-Ross: Stroudsburg 1975Google Scholar
  21. Volk, O.H.: Die Florengebiete von Südwestafrika. Journal 20, S.W.A. Wissensch. Gesellschaft Windhock, 25–58 (1966)Google Scholar
  22. Walter, H.: Die ökologischen Verhältnisse in der Namib Nebelwüste (Südwestafrika) unter Auswertung der Aufzeichnungen des Dr. G. Boss (Swakopmund). Jahrbücher f. wiss. Bot. 84, 58–221 (1936)Google Scholar
  23. Walter, H.: Die Vegetation der Erde in ökophysiologischer Betrachtung, Bd. I. Stuttgart: Fischer 1973Google Scholar
  24. Whatley, J.M.: The occurrence of a peripheral reticulum in plastids of the gymnosperm Welwitschia mirabilis. New Phytologist 74, 215–220 (1975)CrossRefPubMedGoogle Scholar
  25. Winter, K., von Willert, D.J.: NaCl-induzierter Crassulaceen Säurestoffwechsel bei Mesembryanthemum crystallinum. Z. Pflanzenphysiol. 67, 166–170 (1972)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • E. D. Schulze
    • 1
  • H. Ziegler
    • 2
  • W. Stichler
    • 3
  1. 1.Lehrstuhl für Pflanzenökologie der UniversitätBayreuthGermany
  2. 2.Lehrstuhl für Botanik der Technischen UniversitätMünchen 2Germany
  3. 3.Institut für Radiohydrometrie der Gesellschaft für Strahlen- und Umweltforschung m.b.H. MünchenNeuherbergGermany

Personalised recommendations