, Volume 77, Issue 1, pp 34–38 | Cite as

Filtration rate capacities in 6 species of European freshwater bivalves

  • Jakob Kryger
  • Hans Ulrik Riisgård
Original Papers


Filtration rate capacities in undisturbed freshwater bivalves were determined by means of two different methods (indirect “clearance” and “suction” methods) in Anodonta anatina (L.), Unio tumidus Philipsson, Unio pictorum (L.), Unio crassus Philipsson, Dreissena polymorpha (Pallas) and Sphaerium corneum (L.). In A. anatina, D. polymorpha, and S. corneum the filtration rate (FR, 1 h-1) at 19–20°C as a function of dry tissue weight (DW, g) or ash-free dry weight (AFDW, g) could be expressed by the equations: 1.10 DW0.78, 6.82 DW0.88, and 2.14 AFDW0.92, respectively. In U. tumidus, U. pictorum, and U. crassus filtration rates were comparable with those of A. anatina. In D. polymorpha the b value of the corresponding regression of gill area on dry weight was 0.87. The rates of water transport in freshwater bivalves are 2–8 times lower than in marine bivalves of comparable size. A corresponding difference in the filtration rate per gill area unit is found. The measured filtration rates in undisturbed bivalves are substantially higher (at least 4 times) than previously reported. This indicates that the impact of bivalve water processing on freshwater ecosystems is greater than hitherto suggested.

Key words

Freshwater bivalves Filtration rate capacity Indirect methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alimov AE (1965) The filtrational ability of mollusks belonging to the genus Sphaerium (Scopuli). Dokl Biol Sci [Engl Transl] 164: 195–197Google Scholar
  2. Alimov AF (1969) Nekotorye obscie zakonomernosti processa filtracii u dvustvorcatych molljuskov. Zh Obschch Biol 30: 621–631Google Scholar
  3. Benedens H-G, Hinz W (1980) Zur Tagesperiodizität der Filtrationsleistung von Dreissena polymorpha and Sphaerium corneum (Bivalvia). Hydrobiologia 69: 45–48Google Scholar
  4. Coughlan J (1969) The estimation of filtering rate from the clearance of suspensions. Mar Biol 2: 356–358Google Scholar
  5. DeBruin JPC, Davids C (1970) Observations on the rate of water pumping of the freshwater mussel Anodonta cygnea zellensis (Gmelin). Neth J Zool 20: 380–391Google Scholar
  6. Famme P, Riisgård HU, Jørgensen CB (1986) On direct measurements of pumping rates in the mussel Mytilus edulis. Mar Biol 92: 323–327Google Scholar
  7. Hinz W, Scheil H-G (1972) Zur Filtrationsleistung von Dreissena, Sphaerium und Pisidium. Oecologia (Berlin) 11: 45–54Google Scholar
  8. Izvekova EI, Lvova-Katchanova AA (1972) Sedimentation of suspended matter by Dreissena polymorpha Pallas and its subsequent utilization by Chironomidae larvae. Pol Arch Hydrobiol 19: 203–210Google Scholar
  9. Jørgensen CB, Kiørboe T, Møhlenberg F, Riisgård HU (1984) Ciliary and mucus-net filter feeding, with special reference to fluid mechanical characteristics. Mar Ecol Prog Ser 15: 283–292Google Scholar
  10. Jørgensen CB, Famme P, Saustrup Kristensen H, Larsen PS, Møhlenberg F, Riisgård HU (1986) The bivalve pump. Mar Ecol Prog Ser 34: 69–77Google Scholar
  11. Klee O (1971) Die großte Kläranlage im Bodensee: Eine Muschel. Mikrokosmos 5: 129–131Google Scholar
  12. Kondratév GP (1962) [Cited by Alimov (1969)]Google Scholar
  13. Kondratév GP (1963) O nekotoryh osobennostjah filtracii u presnovodnyh molljuskov. Naucnye doklady vyssej skoly. Biol Nauki (Moscow) 1: 13–16Google Scholar
  14. Lewandowski K, Stańczykowska A (1975) The occurrence and role of bivalves of the family Unionidae in Mikolajskie Lake. Ekol Pol 23: 317–334Google Scholar
  15. Micheev VP (1966) O skorosti fil tracii vody Drejssenoj. Tr Inst Biol Vodokhran Akad Nauk SSSR 12: 134–138Google Scholar
  16. Møhlenberg F, Riisgård HU (1978) Efficiency of particle retention in 13 species of suspension feeding bivalves. Ophelia 17: 239–246Google Scholar
  17. Møhlenberg F, Riisgård HU (1979) Filtration rate, using a new indirect technique, in thirteen species of suspension feeding bivalves. Mar Biol 54: 143–147Google Scholar
  18. Morton B (1971) Studies on the biology of Dreissena polymorpha Pall. v. Some aspects of filter-feeding and the effect of microorganisms upon the rate of filtration. Proc Malacol Soc London 39: 289–301Google Scholar
  19. Stańczykowska A (1977) Ecology of Dreissena polymorpha (Pall.) (Bivalvia) in lakes. Pol Arch Hydrobiol 24: 461–530Google Scholar
  20. Stańczykowska A (1984) Role of bivalves in the phosphorus and nitrogen budget in lakes. Verh Int Ver Theor Angew Limnol 22: 982–985Google Scholar
  21. Stańczykowska A, Lawacz W, Mattice J (1975) Use of field measurements of consumption and assimilation in evaluation of the role of Dreissena polymorpha Pall. in a lake ecosystem. Pol Arch Hydrobiol 22: 598–520Google Scholar
  22. Stańczykowska A, Lawacz W, Mattice J, Lewandowski K (1976) Bivalves as a factor effecting circulation of matter in Lake Mikolajskie (Poland). Limnologica 10: 347–352Google Scholar
  23. Walz N (1978) The energy balance of the freshwater mussel Dreissena polymorpha Pallas in laboratory experiments and in Lake Constance. I. Pattern of activity, feeding and assimilation efficiency. Arch Hydrobiol [Suppl] 55: 83–105Google Scholar
  24. Williams LG (1982) Mathematical analysis of the effects of particle retention efficiency on determination of filtration rate. Mar Biol 66: 171–177Google Scholar
  25. Winter JE (1977) A critical review on some aspects of filter-feeding in lamellibranchiate bivalves. Haliotis 7: 71–87Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Jakob Kryger
    • 1
  • Hans Ulrik Riisgård
    • 1
  1. 1.Institute of BiologyOdense UniversityOdense MDenmark

Personalised recommendations