, Volume 77, Issue 1, pp 7–13 | Cite as

Performance of two Picea abies (L.) Karst. stands at different stages of decline

V. Root tip and ectomycorrhiza development and their relations to above ground and soil nutrients
  • J. Meyer
  • B. U. Schneider
  • K. Werk
  • R. Oren
  • E. -D. Schulze
Original Papers


The development of root tips and apparent ectomycorrhizas was compared in the Fichtelgebirge (FRG) over one growing season in two 30-year-old Picea abies stands, both on soils derived from phyllite but showing varying symptoms of decline. Visual symptoms of tree decline reflected a lower relative and absolute mycorrhizal frequency, a lower number of ectomycorrhizas per m2 leaf area and an uneven vertical distribution of root tips and ectomycorrhizas. The number of apparent ectomycorrhizas per ground area was correlated with the amount of magnesium, calcium, and ammonium, and the pH in the free-drainage soil solution, and with the molar calcium to aluminium ratio in mineral soil extracts. The foliage concentrations of magnesium and calcium were correlated with the numbers of apparent ectomycorrhizas per m2 leaf or ground area. These observations were used to formulate testable hypotheses concerning the role of the root system and the soil environment in forest decline.

Key words

Forest decline Ectomycorrhizas Fine roots Picea abies 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bowen GB (1973) Mineral nutrition of ectomycorrhizae. In: Marks GC, Kozlowski TT (eds) Ectomycorrhizae: their ecology and physiology. Academic Press, London, pp 151–205Google Scholar
  2. Chilvers GA, Gust LW (1981) The development of mycorrhizal populations on pot-grown seedlings of Eucalyptus St. Johnii R.T. Bak. New Phytol 90:677–699Google Scholar
  3. Huang L, Trappe JM (1983) Growth variation between and within species of ectomycorrhizal fungi in response to pH in vitro. Mycologia 75:234–241Google Scholar
  4. Kaupenjohann M, Hantschel R, Horn R, Zech W (1985) Nährstoffversorgung gedüngter, unterschiedlich geschädigter Fichten auf immissionsbelasteten Standorten in NO-Bayern. Mitt Dtsch Bodenkundl Ges 43:969–974Google Scholar
  5. König N, Baccini P, Ulrich B (1986) The influence of organic matter in the translocation of metals between soil and soil solution of an acid forest soil. Z Pflanzenernähr Bodenkd 149:68–82Google Scholar
  6. Kottke I, Agerer R (1983) Untersuchungen zur Bedeutung der Mykorrhiza in älteren Laub- und Nadelwaldbeständen des Südwestdeutschen Keuperberglandes. Mitt Ver Forstl Standortskd 30:30–39Google Scholar
  7. Kottke I, Oberwinkler F (1986) Mycorrhiza of forest trees-structure and function. Trees 1:1–24Google Scholar
  8. Matzner E, Ulrich B (1985) Implications of the chemical soil conditions for forest decline. Experientia 41:578–584Google Scholar
  9. Meyer FH, Göttsche D (1971) Distribution of root tips and tender roots of beech. In: Ellenberg H (ed) Ecological studies, vol 2. Springer, Berlin, pp 48–52Google Scholar
  10. Meyer FH (1973) Distribution of ectomycorrhizae in native and man-made forests. In: Marks GC, Kozlowski TT (eds) Ectomycorrhizae: their ecology and physiology. Academic Press, London, pp 79–105Google Scholar
  11. Meyer FH (1984) Mykologische Beobachtungen zum Baumsterben. Allg Forstz 9/10:212–229Google Scholar
  12. Murach D (1984) Die Reaktion der Feinwurzeln von Fichten (Picea abies Karst) auf zunehmende Bodenversauerung. Göttinger Bodenkd Ber 77:1–126Google Scholar
  13. Nömmik H, Larsson K, Lohm U (1984) Effects of experimental acidification and liming on the transformations of carbon, nitrogen and sulphur in forest soils. Nat Swed Env Prot Board Rep snv pm 1869Google Scholar
  14. Oren R, Werk KS, Schulze E-D (1986) Relationship between foliage and conducting xylem in Picea abies (L.) Karst. Trees 1:61–69Google Scholar
  15. Oren R, Schulze E-D, Meyer J, Werk KS, Zimmermann R (1988a) Performance of two Picea abies (L.) Karst. stands at different stages of decline. I. Carbon relations and stand growth. Oecologia 75:25–37Google Scholar
  16. Oren R, Werk KS, Schulze E-D, Meyer J, Schneider BU, Schramel P (1988b) Performance of two Picea abies (L.) Karst- stands at different stages of decline. VI. Nutrient concentrations. Oecologia (in press)Google Scholar
  17. Osonubi O, Oren R, Werk KS, Schulze E-D (1988) Performance of two Picea abies (L.) Karst- at different stages of decline. IV. Xylem sap concentrations of magnesium, calcium, potassium, and nitrogen. Oecologia (in press) 77:1–6Google Scholar
  18. Rost-Siebert K (1983) Aluminium-Toxizität und-Toleranz an Keimpflanzen von Fichte (Picea abies Karst.) und Buche (Fagus ilvativa L.). Allg Forstz 38:686Google Scholar
  19. Sokal RR, Rohlf FJ (1975) Biometry. Freeman, San Francisco, pp 208–241, 561–582Google Scholar
  20. Thompson GW, Medve RJ (1984) Effects of aluminum and manganese on the growth of ectomycorrhizal fungi. Appl Environ Microbiol 48:556–560Google Scholar
  21. Werk KS, Oren R, Meyer J, Schulze E-D (1988) Performance of two Picea abies (L.) Karst. at different stages of decline. III. Canopy transpiration of green trees. Oecologia 76:519–524Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • J. Meyer
    • 1
  • B. U. Schneider
    • 2
  • K. Werk
    • 1
  • R. Oren
    • 1
  • E. -D. Schulze
    • 1
  1. 1.Lehrstuhl für PflanzenökologieUniversität BayreuthBayreuthFederal Republic of Germany
  2. 2.Lehrstuhl für BodenkundeUniversität BayreuthBayreuthFederal Republic of Germany

Personalised recommendations