Advertisement

Archive for Rational Mechanics and Analysis

, Volume 113, Issue 1, pp 65–96 | Cite as

Self-trapping of an electromagnetic field and bifurcation from the essential spectrum

  • C. A. Stuart
Article

Keywords

Neural Network Complex System Electromagnetic Field Nonlinear Dynamics Electromagnetism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akhmanov, R. V., Khokhlov, R. V. & Sukhorukov, A. P.: Self-focusing, self-defocusing and self-modulation of laser beams, in Laser Handbook, edited by F. T. Arecchi & E. O. Schulz Dubois, North-Holland, Amsterdam, 1972.Google Scholar
  2. 2.
    Born, M. & Wolf, E.: Principles of Optics, fifth edition, Pergamon Press, Oxford, 1975.Google Scholar
  3. 3.
    Brezis, H.: Analyse fonctionnelle, Masson, Paris, 1983.Google Scholar
  4. 4.
    Chiao, R. Y., Garmire, E. & Townes, C. H.: Self-trapping of optical beams, Phys. Rev. Lett. 13 (1964), 479–482.Google Scholar
  5. 5.
    Dunford, N. & Schwartz, J. T.: Linear Operators, Vol. 2, Interscience, New York, 1958.Google Scholar
  6. 6.
    Feynman, R. P., Leighton, R. B. & Sands, M.: Lectures on Physics, Vol. 2, Addison-Wesley, New York, 1964.Google Scholar
  7. 7.
    Hellwarth, R. W.: Third order susceptibilities of liquids and solids, Prog. Quantum Electr. 5 (1975), 1–68.Google Scholar
  8. 8.
    Kato, T.: Perturbation Theory for Linear Operators, Springer, Berlin, 1976.Google Scholar
  9. 9.
    Marburger, J. H.: Self-focusing: theory. Prog. Quant. Electr. 4 (1975), 35–100.Google Scholar
  10. 10.
    Marburger, J., Huff, L., Reichert, L. D. & Wagner, W. S.: Stationary self-trapping of optical beams in dense media with Lorentz local-field corrections, Phys. Rev. 184 (1969), 255–259.Google Scholar
  11. 11.
    Pohl, D.: Vectorial theory of self-trapping light beams, Optics Comm. 2 (1970), 305–308.Google Scholar
  12. 12.
    Reintjes, J. F.: Nonlinear Optical Processes, in Encyclopedia of Physical Science and Technology, Vol. 9, Academic Press, New York, 1987.Google Scholar
  13. 13.
    Shen, Y. R.: Self-focusing: experimental, Prog. Quant. Electr. 4 (1975), 1–34.Google Scholar
  14. 14.
    Smith, W. L.: Nonlinear refractive index, in Handbook of Laser Science and Technology, Vol. 3, editor M. J. Weber, CRC Press, Boca Raton, 1986.Google Scholar
  15. 15.
    Snyder, A. W. & Love, J. D.: Optical Waveguide Theory, Chapman and Hall, London, 1983.Google Scholar
  16. 16.
    Strauss, W.: The nonlinear Schrödinger equation, in Contemporary Developments in Continuum Mechanics and Partial Differential Equations, North Holland, Amsterdam, 1978.Google Scholar
  17. 17.
    Strauss, W.: Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), 149–162.Google Scholar
  18. 18.
    Stuart, C. A.: Global properties of components of solutions of nonlinear second order ordinary differential equations on the half-line, Ann. Sc. Norm, Sup. Pisa 2 (1975), 265–286.Google Scholar
  19. 19.
    Stuart, C. A.: Bifurcation for Dirichlet problems without eigenvalues, Proc. London Math. Soc. 45 (1982), 169–192.Google Scholar
  20. 20.
    Stuart, C. A.: Bifurcation from the essential spectrum, Proc. of Equal. Diff. 82, Lecture Notes in Math. No. 1017, Springer, Berlin, 1983.Google Scholar
  21. 21.
    Stuart, C. A.: Bifurcation from the essential spectrum for some non-compact non-linearities, Math. Meth. Appl. Sci. 11 (1989), 525–542.Google Scholar
  22. 22.
    Svelto, O.: Self-focusing, self-trapping and self-phase modulation of laser beams, in Progress in Optics, Vol. 12, editor E. Wolf, North Holland, Amsterdam, 1974.Google Scholar
  23. 23.
    Talanov, V. S.: Self-focusing of wave beams in nonlinear media, 564-JETP Lett. 2 (1965), 138–141.Google Scholar
  24. 24.
    Wang, C. C.: Mathematical Principles of Mechanics and Electromagnetism, Part B, Plenum Press, New York, 1979.Google Scholar
  25. 25.
    Stegeman, G. I., Ariyasu, J., Seaton, C. I., Shen, T-P., & Moloney, J. V.: Non-linear thin-film guided waves in non-Kerr media, Appl. Phys. Lett. 47 (1985), 1254–1256.Google Scholar
  26. 26.
    Stegeman, G. I., Wright, E. M., Seaton, C. T., Moloney, J. V., Shen, T. P., Maradudin, A. A., & Wallis, R. F.: Nonlinear slab-guided waves in non-Kerr-like media, IEEE, J. Quantum Elect. 22 (1986), 977–983.Google Scholar
  27. 27.
    Langbein, U., Lederer, F., Peschel. T., & Ponath, H.-E.: Nonlinear guided waves in saturable nonlinear media, Opt. Letter 10 (1985), 571–573.Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • C. A. Stuart
    • 1
  1. 1.Département de MathématiquesÉcole Polytechnique Fédérale de LausanneSchweiz

Personalised recommendations