Advertisement

Planta

, Volume 127, Issue 3, pp 285–299 | Cite as

Relative thermostability of the chloroplast envelope

  • G. H. Krause
  • K. A. Santarius
Article

Summary

Intact isolated chloroplasts from leaves of Spinacia oleracea L. were subjected to heat treatment. After heating, the integrity of the chloroplast envelopes and the activities of various light-dependent chloroplast reactions were tested. The integrity of the chloroplast envelopes, as judged from rates of ferricyanide reduction, enzyme compartmentation and visual appearance of the chloroplasts in the light microscope with phase optics, was affected much less by heat stress than the photochemical reactions of thylakoids. This indicates a comparatively high thermostability of the chloroplast envelope membranes. It is also evidence of a differential thermostability of different biomembranes. Photophosphorylation was highly susceptible to thermal stress. Heat treatment that partly inactivated phosphorylation stimulated light-dependent quenching of 9-aminoacridine fluorescence, which served as an indicator of proton transfer from stroma to thylakoids in intact chloroplasts. Drastic changes in the characteristics of chlorophyll a fluorescence emission caused by heating were probably due to structural alterations of the thylakoid system.

Keywords

Thermal Stress Heat Stress Proton Transfer Ferricyanide Phase Optic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergmeyer, U.: Methoden der enzymatischen Analyse. 2nd Edition. Weinheim/Bergstraße: Verlag Chemie 1970Google Scholar
  2. Douce, R., Holtz, R. B., Benson, A. A.: Isolation and properties of the envelope of spinach chloroplasts. J. biol. Chem. 248, 7215–7222 (1973)Google Scholar
  3. Emmett, J. M., Walker, D. A.: Thermal uncoupling in chloroplasts. Biochim. biophys. Acta (Amst.) 180, 424–425 (1969)Google Scholar
  4. Emmett, J. M., Walker, D. A.: Thermal uncoupling in chloroplasts. Inhibition of photophosphorylation without depression of light-induced pH change. Arch. Biochem. 157, 106–113 (1973)Google Scholar
  5. Fiolet, J. W. T., Bakker, E. P., van Dam, K.: The fluorescence properties of acridines in the presence of chloroplasts or liposomes. On the quantitative relationship between the fluorescence quenching and the transmembrane proton gradient. Biochim. biophys. Acta (Amst.) 368, 432–445 (1974)Google Scholar
  6. Heber, U.: Metabolite exchange between chloroplasts and cytoplasm. Ann. Rev. Plant Physiol. 25, 393–421 (1974)Google Scholar
  7. Heber, U., Hallier, U. W., Hudson, M. A.: Untersuchungen zur intrazellulären Verteilung von Enzymen und Substraten in der Blattzelle. II. Lokalisation von Enzymen des reduktiven und des oxydativen Pentosephosphat-Zyklus in den Chloroplasten und Permeabilität der Chloroplasten-Membran gegenüber Metaboliten. Z. Naturforsch. 22b, 1200–1215 (1967)Google Scholar
  8. Heber, U., Kirk, M. R.: Flexibility of coupling and stoichiometry of ATP formation in intact chloroplasts. Biochim. biophys. Acta (Amst.) 376, 136–150 (1975)Google Scholar
  9. Heber, U., Kirk, M. R., Gimmler, H., Schäfer, G.: Uptake and reduction of glycerate by isolated chloroplasts. Planta (Berl.) 120, 31–46 (1974)Google Scholar
  10. Heber, U., Krause, G. H.: Transfer of carbon, phosphate energy and reducing equivalents across the chloroplast envelope. In: Photosynthesis and Photorespiration. Eds.: Hatch, M. D., Osmond, C. B., Slatyer, R. O., p. 218–225. New York: Wiley Interscience 1971Google Scholar
  11. Heber, U., Krause, G. H.: Hydrogen and proton transfer across the chloroplast envelope. In: Proc. IInd Internat. Congress on Photosynthesis Research. Eds.: Forti, G., Avron, M., Melandri, A. Vol. II, p. 1023–1033. The Hague: W. Junk 1972Google Scholar
  12. Heber, U., Santarius, K. A.: Loss of adenosine triphosphate synthesis caused by freezing and its relationship to frost hardiness problems. Plant Physiol. 39, 712–719 (1964)Google Scholar
  13. Heber, U., Santarius, K. A.: Direct and indirect transfer of ATP and ADP across the chloroplast envelope. Z. Naturforsch. 25b, 718–728 (1970)Google Scholar
  14. Heber, U., Santarius, K. A.: Cell death by cold and heat and resistance to extreme temperatures. Mechanisms of hardening and dehardening. In: Temperature and Life. Eds.: Precht, H., Christophersen, J., Hensel, H., Larcher, W., p. 232–263. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  15. Heber, U., Tyankova, L., Santarius, K. A.: Effects of freezing on biological membranes in vivo and in vitro. Biochim. biophys. Acta (Amst.) 291, 23–37 (1973)Google Scholar
  16. Heldt, H. W., Sauer, F.: The inner membrane of the chloroplast envelope as the site of specific metabolite transport. Biochim. biophys. Acta (Amst.) 234, 83–91 (1971)Google Scholar
  17. Heldt, H. W., Werdan, K., Milovancev, M., Geller, G.: Alkalization of the chloroplast stroma caused by light-dependent proton flux into the thylakoid space. Biochim. biophys. Acta (Amst.) 314, 224–241 (1971)Google Scholar
  18. Jensen, R. G., Bassham, J. A.: Photosynthesis by isolated chloroplasts. Proc. Nat. Acad. Sci. (U.S.) 56, 1095–1101 (1966)Google Scholar
  19. Krause, G. H.: Indirekter ATP-Transport zwischen Chloroplasten und Zytoplasma während der Photosynthese. Z. Pflanzenphysiol. 65, 13–23 (1971)Google Scholar
  20. Krause, G. H.: The high-energy state of the thylakoid system as indicated by chlorophyll fluorescence and chloroplast shrinkage. Biochim. biophys. Acta (Amst.) 292, 715–728 (1973)Google Scholar
  21. Mackender, R. O., Leech, R. M.: The galactolipid, phospholipid, and fatty acid composition of the chloroplast envelope membranes of Vicia faba L. Plant Physiol. 53, 496–502 (1974)Google Scholar
  22. Mukohata, Y., Yagi, T., Higashida, M., Shinozaki, K., Matsuno, A.: Biophysical studies on subcellular particles. VI. Photosynthetic activities in isolated spinach chloroplasts after transient warming. Plant & Cell Physiol. 14, 111–118 (1973)Google Scholar
  23. Papageorgiou, G.: Chlorophyll fluorescence: An intrinsic probe of photosynthesis. In: Bioenergetics of Photosynthesis. Ed.: Govindjee, p. 319–371. New York: Academic Press 1975Google Scholar
  24. Poincelot, R. P.: Isolation and lipid composition of spinach chloroplast envelope membranes. Arch. Biochem. 159, 134–142 (1973)Google Scholar
  25. Rottenberg, H., Grunwald, T., Schuldiner, S., Avron, M.: The determination of ΔpH in chloroplasts and subchloroplast particles. In: Proc. IInd Internat. Congress on Photosynthesis Research. Eds.: Forti, G., Avron, M., Melandri, A.. Vol. II, p. 1035–1047. The Hague: W. Junk 1972Google Scholar
  26. Santarius, K. A.: The effect of freezing on thylakoid membranes in the presence of organic acids. Plant Physiol. 48, 156–162 (1971)Google Scholar
  27. Santarius, K. A.: The protective effect of sugars on chloroplast membranes during temperature and water stress and its relationship to forst, desiccation and heat resistance. Planta (Berl.) 113, 105–114 (1973)Google Scholar
  28. Santarius, K. A.: Seasonal changes in plant membrane stability as evidenced by the heat sensitivity of chloroplast membrane reactions. Z. Pflanzenphysiol. 73, 448–451 (1974)Google Scholar
  29. Santarius, K. A.: Sites of heat sensitivity in chloroplasts and differential inactivation of cyclic and noncyclic photophosphorylation by heating. J. Therm. Biol. 1 (1975) (in press)Google Scholar
  30. Santarius, K. A., Heber, U.: Das Verhalten von Hill-Reaktion und Photophosphorylierung isolierter Chloroplasten in Abhängigkeit vom Wassergehalt. II. Wasserentzug über CaCl2. Planta (Berl.) 73, 109–137 (1967)Google Scholar
  31. Santarius, K. A., Stocking, C. R.: Intracellular localization of enzymes in leaves and chloroplast membrane permeability to compounds involved in amino acid synthesis. Z. Naturforsch. 24b, 1170–1179 (1969)Google Scholar
  32. Schuldiner, S., Rottenberg, H., Avron, M.: Determination of ΔpH in chloroplasts. 2. Fluorescent amines as a probe for the determination of ΔpH in chloroplasts. Europ. J. Biochem. 25, 64–70 (1972)Google Scholar
  33. Semichatova, O. A., Bushuyeva, T. M., Nikulina, G. N.: The effect of temperature on respiration and oxidative phosphorylation of pea seedlings. In: The Cell and Environmental Temperature. Ed.: Troshin, A. S., p. 283–287. Proc. Intern. Symp. Cytoecology, Leningrad 1963. Oxford: Pergamon Press 1967Google Scholar
  34. Spencer, D., Unt, H.: Biochemical and structural correlations in isolated spinach chloroplasts under isotonic and hypotonic conditions. Austral. J. biol. Sci. 18, 197–210 (1965)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • G. H. Krause
    • 1
  • K. A. Santarius
    • 1
  1. 1.Botanisches Institute der Universität DüsseldorfDüsseldorf 1Germany

Personalised recommendations