, Volume 126, Issue 2, pp 127–138 | Cite as

Analysis of cell elongation in red algae by fluorescent labelling

  • Susan Drury Waaland
  • J. Robert Waaland


The mechanism of cell elongation in five red algae, Griffithsia pacifica Kylin, G. tenuis C. Agardh, G. globulifera Harvey, Antithamnion kylinii Gardner, and Callithamnion sp. was studied using Calcofluor White ST as a vital, fluorescent cell-wall stain. In each alga elongation of intercalary shoot cells occurs primarily by the localized addition of new cell-wall material rather than by extension of pre-existing cell wall. Cell extension is localized in narrow bands in the lateral walls of a cell; there may be one or two bands per cell and these may be located at the top or bottom of the lateral wall. The number and location of bands of elongation are constant within a species but vary from species to species. Cell walls of elongating intercalary cells of each of these algae are essentially isotropic, indicating a net random orientation of cell-wall microfibrils.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bartnicki-Garcia, S.: Fundamental aspects of hyphal morphogenesis. Symp. Soc. Gen. Microbiol. 23, 245–268 (1973)Google Scholar
  2. Bartnicki-Garcia, S., Lippman, E.: Fungal morphogenesis: cell wall construction in Mucor rouxii. Science 165, 302–304 (1969)Google Scholar
  3. Belford, D. S., Preston, R. D.: The structure and growth of root hairs. J. exp. Bot. 12, 157–168 (1961)Google Scholar
  4. Castle, E. S.: The mode of growth of epidermal cells of the Avena coleoptile. Proc. nat. Acad. Sci. (Wash.) 41, 197–199 (1955)Google Scholar
  5. Castle, E. S.: The topography of tip growth in a plant cell. J. gen. Physiol. 41, 913–926 (1958)Google Scholar
  6. Cole, K.: Induced fluorescence in gametophytes of some Laminariales. Canad. J. Bot. 42, 1173–1181 (1964)Google Scholar
  7. Darken, M. A.: Application of fluorescent brighteners in biological techniques. Science 133, 1704–1705 (1961)Google Scholar
  8. Darken, M. A.: Absorption and transport of fluorescent brighteners by microorganisms. Appl. Microbiol. 10, 387–393 (1962)Google Scholar
  9. Dixon, P. S.: Cell enlargement in relation to the development of thallus form in Florideophyceae. Brit. Phycol. J. 6, 195–205 (1971)Google Scholar
  10. Duffield, E. S. C., Waaland, S. D., Cleland, R. E.: Morphogenesis in the red alga, Griffithsia pacifica: regeneration from single cells. Planta (Berl.) 105, 185–195 (1972)Google Scholar
  11. Green, P. B.: The spiral growth pattern of the cell wall of Nitella axilaris. Amer. J. Bot. 41, 403–409 (1954)Google Scholar
  12. Green, P. B.: On mechanisms of elongation. Symp. Soc. Study Growth Devel. 21, 208–234 (1963)Google Scholar
  13. Haberlandt, G.: Physiological plant anatomy, 4th edn. London: Macmillan 1914Google Scholar
  14. Maeda, H., Ishida, N.: Specificity of binding of hexopyranosyl polysaccharides with fluorescent brightener. J. Biochem. (Tokyo) 62, 276–278 (1967)Google Scholar
  15. Nagata, T., Takebe, I.: Cell wall regeneration and cell division in isolated tobacco mesophyll photoplasts. Planta (Berl.) 92, 301–308 (1970)Google Scholar
  16. Nagata, Y.: Rhizoid differentiation in Spirogyra. I. Basic features of rhizoid formation. Plant and Cell Physiol. 14, 531–541 (1913)Google Scholar
  17. Nakazawa, S., Takamura, K., Abe, M.: Rhizoid differentiation in Fucus eggs labelled with Calcofluor White and birefringence of cell wall. Bot. Mag. (Tokyo) 82, 41–44 (1969)Google Scholar
  18. Roelofsen, P. A.: The plant cell wall. Handbuch der Pflanzenanatomie, vol. III, pt. 4: Berlin-Nikolassee: Borntrager 1959Google Scholar
  19. Roelofsen, P. A.: Ultrastructure of the wall in growing cells and its relation to the direction of the growth. Advanc. Bot. Res. 2, 69–149 (1965)Google Scholar
  20. Rosen, W. G., Gawlik, S. R., Dashek, W. V., Siegesmund, K. A.: Fine structure and cytochemistry of Lilium pollen tubes. Amer. J. Bot. 51, 67–71 (1964)Google Scholar
  21. Ruiz-Herrera, J., Bartnicki-Garcia, S.: Synthesis of cell wall microfils in vitro by a “soluble” chitin synthetase from Mucor rouxii. Science 186, 357–359 (1974)Google Scholar
  22. Waaland, S. D., Waaland, J. R., Cleland, R.: A new pattern of plant cell elongation: bipolar band growth. J. Cell Biol. 54, 184–190 (1972)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Susan Drury Waaland
    • 1
  • J. Robert Waaland
    • 1
  1. 1.Department of BotanyUniversity of WashingtonSeattleUSA

Personalised recommendations