Advertisement

Archive for Rational Mechanics and Analysis

, Volume 122, Issue 3, pp 231–290 | Cite as

Homogenization of nonlinearly elastic materials, microscopic bifurcation and macroscopic loss of rank-one convexity

  • Giuseppe Geymonat
  • Stefan Müller
  • Nicolas Triantafyllidis
Article

Keywords

Neural Network Complex System Nonlinear Dynamics Electromagnetism Elastic Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AT 81]
    R. Abeyaratne & N. Triantafyllidis, The emergence of shear bands in plane strain, Int. J. Solids Structures, 17 (1981), pp. 1113–1134.Google Scholar
  2. [AT 84]
    R. Abeyaratne & N. Triantafyllidis, An investigation of localization in a porous elastic material using homogenization theory, J. Appl. Mech, 51 (1984), pp. 481–486.Google Scholar
  3. [AF 84]
    E. Acerbi & N. Fusco, Semicontinuity problems in the calculus of variations, Arch. Rational Mech. Anal., 86 (1984), pp. 125–145.Google Scholar
  4. [A 84]
    H. Attouch, Variational Convergence of Functions and Operators, Pitman, London (1984).Google Scholar
  5. [B 77]
    J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal., 63 (1977), pp. 337–403.Google Scholar
  6. [BLP 78]
    A. Bensoussan, J.-L. Lions & G. Papanicolaou, Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam (1978).Google Scholar
  7. [Br 85]
    A. Braides, Homogenization of some almost periodic coercive functional, Rend. Accad. Naz. XL, 9 (1985), pp. 313–322.Google Scholar
  8. [DM 81]
    G. DalMaso & L. Modica, A general theory of variational functionals, in: “Topics in Functional Analysis” (1980–1981), eds. F. Strocchi, E. Zarantonello, E. DeGiorgi, E. DalMaso & L. Modica, Sc. Norm. Sup., Pisa (1981), pp. 149–221.Google Scholar
  9. [D 75]
    E. DiGiorgi, Sulla convergenza di alcune successioni di integrali del tipo dell'area, Rend. Matematica, 8 (1975), pp. 277–294.Google Scholar
  10. [D 79]
    E. DeGiorgi, Convergence problems for functions and operators, Proc. Int. Meeting on “Recent Methods in Nonlinear Analysis”, Rome (1978), eds. E. DeGiorgi, E. Magenes & U. Mosco, Pitagora, Bologna (1979), pp. 131–188.Google Scholar
  11. [DD 83]
    E. DeGiorgi & G. DalMaso, Γ-convergence and the calculus of variations, in “Mathematical theories of optimization”, eds. J. P. Cecconi & T. Zolezzi, Lect. Notes Math., 979 Springer, Berlin, Heidelberg, New York (1983), pp. 121–143.Google Scholar
  12. [F 83]
    G. Francfort, Homogenization and linear thermoelasticity, SIAM J. Math. Anal., 14 (1983), pp. 696–708.Google Scholar
  13. [FM 91]
    G. Francfort & F. Murat, personal communication.Google Scholar
  14. [GMT 90]
    G. Geymonat, S. Müller & N. Triantafyllidis, Quelques remarques sur l'homogénéisation des matériaux élastiques nonlinéaires, C. R. Acad. Sci. Paris, Serie I, 311 (1990), pp. 911–916.Google Scholar
  15. [GT 59]
    A. N. Gent & A. G. Thomas, Mechanics of foamed elastic materials, Rubber Chem. Tech., 36 (1959), pp. 597–610.Google Scholar
  16. [HS 62]
    Z. Hashin & S. Shtrikman, On some variational principles in anisotropic and nonhomogeneous elasticity, J. Mech. Physics Solids, 10 (1962), pp. 335–342.Google Scholar
  17. [HI 82]
    N. C. Hilyard (Ed.), Mechanics of Cellular Plastics, Appl. Science Publ., London (1982).Google Scholar
  18. [H 63]
    R. Hill, Elastic properties of reinforced solids: Some theoretical principles, J. Mech. Phys. Solids, 11 (1963), pp. 357–372.Google Scholar
  19. [H 65]
    R. Hill, A self-consistent mechanics of composite materials, J. Mech. Phys. Solids, 13 (1965), pp. 213–222.Google Scholar
  20. [KS 86]
    R. V. Kohn & G. Strang, Optimal design and relaxation of variational problems, parts I–III, Comm. Pure Appl. Math., 39 (1986), pp. 113–137, 138–182, 353–377.Google Scholar
  21. [K 67]
    E. Kröner, Elastic moduli of perfectly disordered composite materials, J. Mech. Phys. Solids, 15 (1967), pp. 319–340.Google Scholar
  22. [LD 87]
    H. LeDret, An example of H 1-unboundedness of solutions to strongly elliptic systems of PDEs in a laminated geometry, Proc. Royal Soc. Edinburgh, 105A (1987), pp. 77–82.Google Scholar
  23. [Ma 78]
    P. Marcellini, Periodic solutions and homogenization of nonlinear variational problems, Ann. Mat. Pura Appl., 117 (1978), pp. 139–152.Google Scholar
  24. [M 52]
    C. B. Morrey, Jr., Quasi-convexity and lower semicontinuity of multiple integrals, Pacific J. Math., 2 (1952), pp. 25–53.Google Scholar
  25. [M 66]
    C. B. Morrey, Jr., Multiple Integrals in the Calculus of Variations, Springer, Berlin, Heidelberg, New York (1966).Google Scholar
  26. [Mü 87]
    S. Müller, Homogenization of nonconvex integral functionals and cellular elastic materials, Arch. Rational Mech. Anal., 99 (1987), pp. 189–212.Google Scholar
  27. [O 84]
    R. Ogden, Nonlinear Elastic Deformations, Wiley, New York (1984).Google Scholar
  28. [PC 89]
    P. Ponte-Casteneda, The overall constitutive behaviour of nonlinearily elastic composites, Proc. Roy. Soc. London, 422A (1989), pp. 147–171.Google Scholar
  29. [RS 79]
    M. Reed & B. Simon, Methods of Modem Mathematical Physics, Vol. IV, Academic Press, New York (1979).Google Scholar
  30. [SH SP 89]
    J. Sanchez-Hubert & E. Sanchez-Palencia, Vibration and Coupling of Continuous Systems. Asymptotic Methods, Springer, Berlin, Heidelberg, New York. (1989).Google Scholar
  31. [SP 74]
    E. Sanchez-Palencia, Comportement local et macroscopique d'un type de milieux physiques hétérogènes, Int. J. Eng. Sci., 12 (1974), pp. 331–351.Google Scholar
  32. [SP 80]
    E. Sanchez-Palencia, Nonhomogeneous Media and Vibration Theory, Lect. Notes Physics, 127, Springer, Berlin, Heidelberg, New York (1980).Google Scholar
  33. [SP 86]
    E. Sanchez-Palencia, Homogenization in mechanics — A survey of solved and open problems, Rend. Sem. Mat. Univ. Politecn. Torino, 44 (1986), pp. 1–45.Google Scholar
  34. [S 68]
    S. Spangolo, Sulla convergenza di soluzioni di equazioni paraboliche ed ellitiche, Ann. Sc. Norm. Sup. Pisa, 22 (1968), pp. 571–597.Google Scholar
  35. [ST 70]
    E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton (1970).Google Scholar
  36. [Sv 92]
    V. Šverák, Rank-one convexity does not imply quasiconvexity, Proc. Roy. Soc. Edinburgh, 120 (1992), pp. 185–189.Google Scholar
  37. [TW 87]
    D. R. S. Talbot & J. R. Willis, Bounds and Self-Consistent Estimates for the Overall Properties of Nonlinear Composites, IMA J. Appl. Math., 39 (1987), pp. 215–240.Google Scholar
  38. [TM 85]
    N. Triantafyllidis & B. N. Maker, On the comparison between microscopic and macroscopic instability mechanisms in a class of fiber-reinforced composites, J. Appl. Mech., 52 (1985), pp. 794–800.Google Scholar
  39. [W 81]
    J. R. Willis, Variational and related methods for the overall properties of Composites, in “Advances in Applied Mechanics”, 21, Academic Press, New York (1981), pp. 1–78.Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Giuseppe Geymonat
    • 1
    • 2
    • 3
  • Stefan Müller
    • 1
    • 2
    • 3
  • Nicolas Triantafyllidis
    • 1
    • 2
    • 3
  1. 1.Laboratoire de Mécanique et TechnologieE.N.S. de CachanCachan CedexFrance
  2. 2.Institut für Angewandte MathematikUniversität BonnBonn
  3. 3.Department of Aerospace EngineeringThe University of MichiganAnn Arbor

Personalised recommendations