Advertisement

Planta

, Volume 145, Issue 5, pp 411–416 | Cite as

The effect of caffeine, different fixation regimes and low temperature on microtubules in the cells of higher plants

Evidence for diversity in their response to chemical and physical treatments
  • B. E. Juniper
  • J. R. Lawton
Article

Abstract

Caffeine, (1:3:7-tri-methyl-xanthine), either as a prefixation treatment or included with glutaralde-hyde as the primary fixative, destroys or disorganises the microtubules associated with the formation of secondary walls in fibres from the flowering stem of the grass Lolium temulentum L. There is no observable effect of caffeine treatment on the microtubules associated with primary wall formation in collenchyma and young fibres from L. temulentum or in root cap cells of Zea mays L. and Phaseolus vulgaris L. The microtubules associated with primary wall formation are destroyed by cold treatment but not those associated with secondary wall formation. Tannic acid included in the fixative shows the microtubules associated with secondary wall formation in fibres of L. temulentum to be composed of 13 subunits. Treatment with lanthanum hydroxide does not stain the core or the halo of the microtubules.

Key words

Caffeine Cold temperature Lanthanum Microtubules Plant cells Tannic acid 

Abbreviation

PIPES

Piperazine N-N- bis 2 ethanol sulphonic acid

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J.W.: Extraction of enzymes and subcellular organelles from plant tissue. Phytochemistry 7, 1973–1988 (1968)Google Scholar
  2. Bajer, A.S., Molè-Bajer, J.: Spindle dynamics and chromosome movements. Int. Rev. Cytol. Suppl. 3 (1972)Google Scholar
  3. Behnke, O.: A comparative study of microtubules of disk shaped blood cells. J. Ultrastruct. Res. 31, 61–75 (1970)Google Scholar
  4. Behnke, O., Forer, A.: Evidence for 4 classes of microtubules in individual cells. J. Cell. Sci. 2, 169–192 (1967)Google Scholar
  5. Burton, P.R., Fernandez, H.L.: Delineation by lanthanum staining of filamentous elements associated with the surfaces of axonal microtubules. J. Cell Sci. 12, 567–583 (1973)Google Scholar
  6. Chen, M.H., Hiruki, C.: the preservation of membranes of tubular bodies associated with mycoplasmalike organisms by tannic acid. Can. J. Bot. 56, 2878–2882 (1978)Google Scholar
  7. Cox, G.C.: The structure and development of cells with thickened primary walls. Oxford: Thesis 1971Google Scholar
  8. Doggenweiler, C.F., Frenk, S.: Staining properties of lanthanum on cell membranes. Proc. Nat. Acad. Sci. USA 53, 425–430 (1965)Google Scholar
  9. Gunning, B.E.S., Steer, M.W.: Ultrastructure and the biology of plant cells. London: Arnold 1975Google Scholar
  10. Harris, P.J., Hartley, R.D.: The detection of bound ferulic acid in cell walls of Gramineae by U.V. fluorescence microscopy. Nature (London) 259, 508–510 (1976)Google Scholar
  11. Hepler, P.K.: Plant Microtubules. In: Plant Biochemistry, 3rd. Bonner, J., Varner, J.E. eds. New York: Academic Press 1976Google Scholar
  12. Hepler, P.K., Palevitz, B.A.: Microtubules and microfilaments. Ann. Rev. Plant Physiol. 25, 309–362 (1974)Google Scholar
  13. Hinkley, R.E.: Microtubule-Macrotubule transformation induced by volatile anaesthetics: Mechanism of macrotubule assembly. J. Ultrastruct. Res. 57, 237–252 (1976)Google Scholar
  14. Juniper, B.E., Cox, G.C., Gilchrist, A.J., Williams, P.R.: Techniques for plant electron microscopy. Oxford, Edinburgh: Blackwell 1970Google Scholar
  15. Lane, N.J., Treherne, J.E.: Lanthanum staining of neurotubules in axons from cockroach ganglia. J. Cell Sci. 7, 217–231 (1970)Google Scholar
  16. Lawton, R., Harris, P.J.: Fixation of senescing plant tissues: sclerenchymatous fibre cells from the flowering stem of a grass. J. Microsc. (in press).Google Scholar
  17. Lawton, J.R., Harris, P.J., Juniper, B.E.: Ultrastructural aspects of the development of fibres from the flowering stem of Lolium temulentum L. New Phytol. (in press)Google Scholar
  18. Ledbetter, M.C., Porter, K.R.: A “microtubule” in plant cell fine structure. J. Cell Biol. 19, 239–250 (1963)Google Scholar
  19. Letbetter, M.C., Porter, K.R.: Morphology of microtubules of plant cells. Science 144, 872–874 (1964)Google Scholar
  20. Mejbaum-Katzenellenbogen, W., Dobryszycka, W., Boguslawska-Jaworska, J., Morawiecka, B.: Regeneration of protein from insoluble protein-tannin compounds. Nature London 184, 1799–1800 (1959)Google Scholar
  21. Mollenhauer, H.H.: Plastic embedding mixtures for use in electron microscopy. Stein Technol. 39, 111–114 (1964)Google Scholar
  22. Mueller, W.C., Rodenhurst, E.: The effect of some alkaloids on the ultrastructure of phenolic-containing cells in the endodermis of cotton roots 35th, Bailey, G.W. ed. Ann. Proc. Electron Microscopy Soc. Amer. Boston, Mass. 1977Google Scholar
  23. Nelmes, B.J., Preston, R.D., Ashworth, D.: A possible function of microtubules suggested by their distribution in rubbery wood. J. Cell Sci. 13, 741–751 (1973)Google Scholar
  24. Pickett-Heaps, J.D.: The effects of colchicine on the ultrastructure of dividing cells. Xylem wall differentiation and distribution of cytoplasmic microtubules. Develop. Biol. 15, 206–236 (1967)Google Scholar
  25. Pickett-Heaps, J.D.: Preprophase microtubules in some abnormal cells of wheat. J. Cell Sci. 4, 397–420 (1969)Google Scholar
  26. Revel, J.P., Karnovsky, M.J.: Hexagonal array of subunits in intracellular junctions of the mouse heart and liver. J. Cell Biol. 33, C7-C12. (1967)Google Scholar
  27. Reynolds, E.S.: The use of lead citrate at high pH as an electronopaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963)Google Scholar
  28. Röper, W., Röper, S.: Centripetal wall formation in roots of Vicia faba after caffeine treatment. Protoplasma 93, 89–100 (1977)Google Scholar
  29. Roth, L.E., Shigenaka, Y.: Microtubules in the Heliozoan axopodium. Rapid degradation by cupric and nickelous ions. J. Ultrastruct. Res. 31, 356–371 (1970)Google Scholar
  30. Roth, L.E., Pihlaja, D.J., Shigenaka, Y.: Microtubules in the heliozoan axopodium 1. The gradion hypothesis of allosterism in structural proteins. J. Ultrastruct. Res. 30, 7–37 (1970)Google Scholar
  31. Spurr, A.R.: A low-viscosity embedding resin medium for electron microscopy. J. Ultrastruct. Res. 26, 31 (1969)Google Scholar
  32. Tilney, L.G., Bryan, J., Bush, D.J., Fujiwara, K., Mooseker, M.S., Murphy, D.B., Snyder, D.H.: Microtubules: evidence for 13 protofilaments. J. Cell Biol. 59, 267–273 (1973)Google Scholar
  33. Wagner, R.C.: The effect of tannic acid on electron images of capillary endothelial cell membranes. J. Ultrastruct. Res. 57, 132–139 (1976)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • B. E. Juniper
    • 1
  • J. R. Lawton
    • 2
  1. 1.Botany SchoolOxford
  2. 2.The Grassland Research InstituteMaidenheadU.K.

Personalised recommendations