Oecologia

, Volume 76, Issue 2, pp 273–277 | Cite as

Distribution of C3 and C4 grasses at different altitudes in a temperate arid region of Argentina

  • J. B. Cavagnaro
Original Papers

Summary

The distribution of native C3 and C4 grasses in a temperate arid region of Mendoza, Argentina, was studied in six areas at different altitudes. C4 species predominate at low elevations in both relative species abundance and plant cover. At high elevations C3 species are dominant in cover and composition. At medium altitudes (1100–1600 m) grass species composition is balanced but plant cover of C3 species is greater. Of 31 genera in the whole area, 19 were C4. Only the genera Stipa (C3) and Aristida (C4) were present in all the six areas surveyed. The pattern of grass distribution shows high correlation with evapotranspiration and temperature parameters, but low correlation with rainfall. The relation between grass distribution and different climatic parameters is discussed.

Key words

Grasses Photosynthetic type Distribution Climate Altitude Argentina 

References

  1. Barnes PW, Harrison AT (1982) Species distribution and community organization in a Nebraska sandhill mixed prairic as influenced by plant/soil-water relationships. Oecologia (Berlin) 52:192–201Google Scholar
  2. Barnes PW, Tiezsen LL, Ode DJ (1983) Distribution, production and diversity of C3- and C4-dominated communities in a mixed prairie. Can J Bot 61:741–751Google Scholar
  3. Baskin JM, Baskin CC (1978) A discussion of the growth and competitive ability of C3 and C4 plants. Castanea 43:71–76Google Scholar
  4. Black CC (1973) Photosynthetic carbon fixation in relation to net CO2 uptake. Annu Rev Plant Physiol 24:253–286Google Scholar
  5. Burgos JJ, Vidal AL (1951) Los climas de la Republica Argentina segun la nueva clasification de Thornthwaite. Meteoros 1:3–32Google Scholar
  6. Cabrera A (1976) Regiones fitogeograficas Argentinas. Enciclopedia Arg. de Agric. y Jardineria, fasciculo I. Ed. ACME, Buenos Aires, 85 ppGoogle Scholar
  7. Caldwell MM, White RS, Moore RT, Camp LB (1977) Carbon balance, productivity and water use of cold winter desert shrub communities dominated by C3 and C4 species. Oecologia (Berlin) 29:275–300Google Scholar
  8. Downton WJS (1975) The occurrence of C4 photosynthesis among plants. Photosynthetica 9:96–105Google Scholar
  9. Ehleringer JR (1978) Implications of quantum yield differences on the distribution of C3 and C4 grasses. Oecologia (Berlin) 31:255–267Google Scholar
  10. Ehleringer JR, Björkman O (1977) Quantum yields for CO2 uptake in C3 and C4 plants: dependence on temperature, CO2 and O2 concentrations. Plant Physiol 59:86–90Google Scholar
  11. Hattersley PW (1983) The distribution of C3 and C4 grasses in Australia in relation to climate. Oecologia (Berlin) 57:113–128Google Scholar
  12. Hattersley PW, Watson L (1975) Anatomical parameters for predicting photosynthetic pathways of grass leaves: The ‘maximum lateral cell count’ and the ‘maximum cell distance count’. Phytomorphology 25:325–333Google Scholar
  13. Martinez Carretero E (1982) Carta fitosociologica de la hoja Mendoza 230-21 (C casa de Piedra-Rio San Isidro). Informe CONICET 1980–82, 70 ppGoogle Scholar
  14. Martinez Carretero E (1985) La vegetacion de la reserva natural Divisadero Largo (Mendoza, Argentina). Doc Phytosociol 9:25–49Google Scholar
  15. Morello J (1958) La provincia fitogeografica del Monte. Opera Lilloana 2:1–155Google Scholar
  16. Passera CB, Dalmasso AD, Duffar E (1983) Ambiente fisico y vegetacion de las pampas de los Nangos y Seca, Mendoza, Argentina. Deserta 7:108–144Google Scholar
  17. Pearcy RW, Troughton JH (1975) C4 photosynthesis in tree form Euphorbia species from Hawaiian rainforest sites. Plant Physiol 55:1055–1056Google Scholar
  18. Pearcy RW, Ehleringer J (1984) Comparative ecophysiology of C3 and C4 plants. Plant. Cell Environ 7:1–13Google Scholar
  19. Roig FA (1973) El cuadro fitosociologico en el estudio de la vegetacion. Descrta 4:45–67Google Scholar
  20. Roig FA (1976) Las comunidades vegetales del piedemonte de la precordillera de Mendoza. Ecosur 3:1–45Google Scholar
  21. Rundel PW (1980) The ecological distribution of C4 and C3 grasses in the Hawaiian islands. Oecologia (Berlin) 45:354–359Google Scholar
  22. Smith BN, Brown WV (1973) The Kranz syndrome in the Gramineae as indicated by carbon isotopic ratios. Am J Bot 60:505–513Google Scholar
  23. Smith BN, Epstein S (1971) Two categories of 13C/12C ratios for higher plants. Plant Physiol 47:380–384Google Scholar
  24. Syvertsen JP, Nickell GL, Spellenberg RW, Cunningham GL (1976) Carbon reduction pathways and standing crop in three Chihuahuan desert plant communities. Southwest Nat 21:311–320Google Scholar
  25. Teeri JA, Stowes LG (1976) Climatic patterns and the distribution of C4 grasses in North America. Oecologia (Berlin) 23:1–12Google Scholar
  26. Tiezsen LL, Senyimba MM, Imbamba SK, Troughton JH (1979) The distribution of C3 and C4 grasses and isotope discrimination along an altitudinal and moisture gradient in Kenya. Oecologia (Berlin) 37:337–350Google Scholar
  27. Vich AIJ (1987) Estimacion del indice de erosividad R, en el area pedemontana del gran Mendoza (Argentina). Rev Geofis (in press)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • J. B. Cavagnaro
    • 1
  1. 1.Ecotisiologia VegetalIADIZA (Instituto Argentino de Invest. de Zonas Aridas)MendozaArgentina

Personalised recommendations