Advertisement

Oecologia

, Volume 76, Issue 2, pp 222–235 | Cite as

Nutrient dynamics within amazonian forests

II. Fine root growth, nutrient availability and leaf litter decomposition
  • Elvira Cuevas
  • Ernesto Medina
Original Papers

Summary

Relationships between fine root growth, rates of litter decomposition and nutrient release were analysed in a mixed forest on Tierra Firme, a Tall Amazon Caatinga and a Low Bana on podsolized sands near San Carlos de Rio Negro. Fine root growth in the upper soil layers (root mat+10 cm upper soil) was considerably higher in the Tierra Firme forest (1117 g m-2 yr-1) than in tall Cattinga (120) and Bana (235). Fine root growth on top of the root mat was stimulated significantly by added N in Tall Caatinga and Low Bana forests, by P in Tierra Firme and Bana forests, and by Ca only in the Tierra Firme forest. Rate of fine root growth in Tierra Firme forest on fresh litter is strongly correlated with the Mg and Ca content of litter. Rate of litter decomposition was inversely related to % lignin and the lignin/N ratio of litter. Litter contact with the dense root mat of the Tierra Firme increased rates of disappearance for biomass, Ca and Mg as compared with litter permanently separated or lifted weekly from the root mat to avoid root attachment. Nitrogen concentration of decomposing litter increased in all forests, net N released being observed only in Caryocar glabrum and Aspidosperma megalocarpum of the Tierra Firme forest after one year of exposure. Results emphasize the differences in limiting nutrients in amazonian forest ecosystems on contrasting soil types: Tierra Firme forests are particularly limited by Ca and Mg, while Caatinga and Bana forests are limited mainly by N availability.

Key words

Amazonian forests Root growth Nutrient release Organic matter decomposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aber JD, Melillo JM (1980) Litter decomposition: measuring relative contributions of organic matter and nitrogen to forest soils. Can J Bot 58:416–421Google Scholar
  2. Anderson JM, Proctor J, Vallack HW (1983) Ecological studies in four contrasting lowland rainforests in Gunung Mulu National Park, Sarawak III. Decomposition processes and nutrient losses from leaf litter. J Ecol 71:503–527Google Scholar
  3. Aranguren J, Escalante G, Herrera R (1982a) Nitrogen cycle of tropical perennial crops under shade trees. I. Coffee. In: Nitrogen cycling in Ecosystems of Latin America and the Caribbean (Robertson PG, Herrera R, Rosswall T, eds) Plant and Soil 67:247–258Google Scholar
  4. Aranguren J, Escalante G, Herrera R (1982b) Ibid. II. Cacao. In: Nitrogen Cycling in Ecosystems of Latin American and the Caribbean (Robertson PG, Herrera R, Rosswall T, eds) Plant and Soil 67:259–269Google Scholar
  5. Attiwill PM (1968) The loss of elements from decomposing leaf litter. Ecology 49:142–145Google Scholar
  6. Berg B, Staaf H (1981) Leaching, accumulation and release of nitrogen in decomposing forest litter. In: Terrestrial nitrogen cycles (Clark FE, Rosswall T, eds) Ecol Bull (Stockholm) 33:163–178Google Scholar
  7. Bernhardt-Reversat F (1972) Decomposition de la litiere de feuilles en foret ombrophile de basse Cote-d'Ivoire. Oecol Plant 7:279–300Google Scholar
  8. Blood R, Tate C, Nicora M (1981) Factors affecting the analysis of environmental samples using inductively coupled plasma. Annual Report to National Science Foundation Okefenokee Swamp Project. Inst of Ecol Univ Georgia. Athens, GeorgiaGoogle Scholar
  9. Bocock KL (1964) Changes in the amount of dry matter, nitrogen, carbon and energy in decomposing woodland leaf litter in relation to activities of soil fauna. J Ecol 52:273–284Google Scholar
  10. Bongers F, Engelen D, Klinge H (1985) Phytomass structure of natural plant communities on spodosols in southern Venezuela: the Bana woodland. Vegetatio 63:13–34Google Scholar
  11. Breimer R (1982) Some observations on soils in relation to forest type in San Carlos de Rio Negro. UNESCO Report, MontevideoGoogle Scholar
  12. Cuenca G (1981) Papel de las raíces micorrícicas del café (Coffea arabiga) en la descomposición de la hojarasca. Tesis M.Sc. Instituto Venezolano de Investigaciones Científicas. CaracasGoogle Scholar
  13. Cuevas E, Medina E (1983) Root production and organic matter decomposition in a Tierra Firme forest of the upper Rio Negro basin. In: Wurzelökologie und Ihre Nutzanwendung. Int Symp Gumpenstein 1982, pp 653–666Google Scholar
  14. Cuevas E, Medina E (1986) Nutrient dynamics in amazonian forest ecosystems. 1. Nutrient flux in fine litter fall and efficiency of nutrient utilization. Oecologia (Berl.) 68:466–472Google Scholar
  15. Day FP Jr (1982) Litter decomposition rates in the seasonally flooded Great Dismal Swamp. Ecology 63:670–678Google Scholar
  16. Dubroeck D, Sánchez V (1981) Caracteristicas ambientales y edáficas del área muestra San Carlos de Rio Negro-Solano MARN, Dirección General de Información e Investigación del Ambiente, Dirección de Suelos, Vegetación y Fauna. Caracas, VenezuelGoogle Scholar
  17. Edwards PJ (1977) Studies of mineral cycling in a montane rain forest in New Guinea. II. The production and disappearance of ter. J Ecol 65:971–992Google Scholar
  18. Fittkau EJ, Junk W, Klinge H, Sioli H (1975) Substrate and vegetation in the Amazon. In: Tuxen R (ed) Vegetation und Substrat. Berichte der Internationalen Vereinigung für Vegetationskunde. J Cramer Vaduz. Liechtenstein, pp 73–90Google Scholar
  19. Foelster H, de las Salas G (1976) Litter fall and mineralization in three tropical evergreen forest stands, Colombia. Acta Cient Ven 21:196–202Google Scholar
  20. Furch K, Klinge H (1978) Towards a regional characterization of the biogeochemistry of alkali and alkali-earth metals in northern South America. Acta Cient Ven 29:434–444Google Scholar
  21. Gadgil RL, Gadgil PD (1975) Suppression of litter decomposition by mycorrhyzal roots of Pinus radiata. New Zealand J For Sci 5:33–41Google Scholar
  22. Gosz JR, Likens GE, Bormann FH (1973) Nutrient release from decomposing leaf and branch litter in the Hubbard Brook forest, New Hampshire. Ecol Mon 43:173–191Google Scholar
  23. Herrera R (1977) Soil and terrain conditions in the San Carlos project (Venezuela MAB-1) study site correlation with vegetation types. Trans Int MAB-IUFRO Workshop Trop Rain For Ecosystem Res, Hamburg-Reinbeck, pp 132–188Google Scholar
  24. Herrera R (1979) Nutrient Distribution and Cycling in an Amazon Caatinga Forest on Spodosols in Southern Venezuela. PhD dissertation. University of Reading, EnglandGoogle Scholar
  25. Herrera R, Jordan CF, Klinge H, Medina E (1978) Amazon ecosystems. Their structure and functioning with particular emphasis on nutrients. Interciencia 3:223–232Google Scholar
  26. Herrera R, Jordan CF, Medina E, Klinge H (1981) How human activities disturb the nutrient cycles of a tropical rain forest in Amazonia. Ambio 10:109–114Google Scholar
  27. Irmler U, Furch K (1980) Weight, energy and nutrient changes during decomposition of leaves in the emersion phase of Central amazonian inundation forests. Pedobiologia 20:118–130Google Scholar
  28. Jackson ML (1964) Análisis químico de suelos. Ed Omega BarcelonaGoogle Scholar
  29. Jenny J, Gesser P, Bingham FT (1949) Comparative study of decomposition rates of organic matter in temperate and tropical regions. Soil Sci 68:419–432Google Scholar
  30. Jordan CF (1982) The nutrient balance of an amazonian rain forest. Ecology 61:14–18Google Scholar
  31. Jordan CF, Escalante G (1980) Root productivity in an Amazonian rain forest. Ecology 61:14–18Google Scholar
  32. Jordan CF, Heuveldop J (1981) The water budget of an amazonian rain forest. Acta Amazonica 11:87–92Google Scholar
  33. Jordan CF, Todd RL, Escalante G (1979) Nitrogen conservation in a tropical rain forest. Oecologia (Berl) 39:123–128Google Scholar
  34. Kiffer E, Puig H, Kilbertus G (1981) Biodegradation des feuilles d'Eperua falcata Aubl. en forêt tropicale humide (Guyane Française). Rev Ecol Biol Sol 18:135–157Google Scholar
  35. Klinge H (1977) Preliminary data on nutrient release from decomposing leaf litter in a neotropical rain forest. Amazoniana 6:193–202Google Scholar
  36. Klinge H, Herrera R (1983). Phytomass structure of the Amazon Caatinga ecosystem in Southern Venezuela 1. Tall Amazon Caatinga. Vegetatio 53:65–84Google Scholar
  37. Klinge H, Medina E (1979). Rio Negro caatingas and campinas, Amazonas states of Venezuela and Brazil. In: Specht RL (ed) Heathland and Related Shrublands. Ecosystems of the World 9A. Elsevier Scient Publ Co. Amsterdam, pp 483–487Google Scholar
  38. Lousier JD, Parkinson D (1978) Chemical element dynamics in decomposing leaf litter. Can J Bot 56:2795–2812Google Scholar
  39. McLaugherty CA, Aber JD, Melillo JM (1982) The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems. Ecology 63:1481–1490Google Scholar
  40. Medina E, Herrera R, Jordan CF, Klinge H (1977) The Amazon project of the Venezuelan Institute for Scientific Research. Nature and Resources UNESCO 13(3):4–6Google Scholar
  41. Medina E, Sobrado M, Herrera R (1978) Significance of leaf orientation for leaf temperature in an Amazon sclerophyll vegetation. J Rad Environ Biophys 15:131–140Google Scholar
  42. Melillo JM, Aber Jd, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626Google Scholar
  43. Mengel K, Kirkby EA (1982) Principles of Plant Nutrition. International Potash Institute. Bern, SwitzerlandGoogle Scholar
  44. Nadelhoffer KJ, Aber JD, Melillo JM (1985) Fine roots, net primary production, and soil nitrogen availability: a new hypothesis. Ecology 66:1377–1390Google Scholar
  45. Nemeth A, Herrera R (1982) Earthworm populations in a Venezuelan tropical rain forest. Pedobiologia 23:437–443Google Scholar
  46. Olson J (1963) Energy storage and balance of producers and decomposers in ecological systems. Ecology 44:322–351Google Scholar
  47. Persson H (1980) Spatial distribution of fine-root growth, mortality and decomposition in a young Scots pine stand in Central Sweden. Oikos 34:77–87Google Scholar
  48. Rains DW (1976) Mineral metabolism. In: Plant Biochemistry (Bonner J, Varner JE, eds) 3rd Ed. Academic Press, New York, pp 561–592Google Scholar
  49. Russell EW (1973) Soil conditions and plant growth. 10th Ed. Longman Group Ltd, LondonGoogle Scholar
  50. Sanford RL Jr (1987) Apogeotropic roots in an Amazonian rain forest. Science 235:1062–1064Google Scholar
  51. Singh JS, Gupta SR (1977) Plant decomposition and soil respiration in terrestrial ecosystems. The Bot Rev 43:449–528Google Scholar
  52. Sobrado M, Medina E (1980) General morphology, anatomical structure and nutrient content of sclerophyllous leaves of the “Bana” vegetation of Amazonas. Oecolgia (Berl) 45:341–345Google Scholar
  53. St John TV (1983) Response of tree roots to decomposing organic matter in two lowland Amazonian rain forests. Can J For Res 13:346–349Google Scholar
  54. St John TV, Uhl C (1983) Mycorrhyzae in the rain forest at San Carlos de Río Negro. Acta Cient Ven 39:233–237Google Scholar
  55. Stark N, Jordan CF (1978) Nutrient retention by the root mat of an Amazonian rain forest. Ecology 59:434–437Google Scholar
  56. Stark N, Spratt M (1977) Root biomass and nutrient storage in rain forest oxisols near San Carlos de Rio Negro. Trop Ecol 18:1–9Google Scholar
  57. Swift MJ, Heal OW, Anderson JM (1979) Decomposition in Terrestrial Ecosystems. Univ of California Press, BerkeleyGoogle Scholar
  58. Uhl C, Murphy PG (1981) Composition, structure, and regeneration of a Tierra Firme forest in the Amazon basin of Venezuela. Trop Ecol 22:219–237Google Scholar
  59. Van Soest PJ (1963) Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin. J AOAC 46:829–835Google Scholar
  60. Vitousek P (1982) Nutrient cycling and nutrient use efficiency. Amer Nat 119:553–572Google Scholar
  61. Went F, Stark N (1968) Mycorrhiza. BioScience 18:1035–1038Google Scholar
  62. Wood TG (1974) Field investigations on the decomposition of leaves of Eucalyptus delegatensis in relation to environmental factors. Pedobiologia 14:343–371Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Elvira Cuevas
    • 1
  • Ernesto Medina
    • 1
  1. 1.Centro de EcologíaIVICCaracasVenezuela

Personalised recommendations