Archive for Rational Mechanics and Analysis

, Volume 129, Issue 2, pp 175–200 | Cite as

Nonnegative solutions of a fourth-order nonlinear degenerate parabolic equation

  • Elena Beretta
  • Michiel Bertsch
  • Roberta Dal Passo
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Bernis, Nonlinear parabolic equations arising in semiconductor and viscous droplets models, W.-M. Ni, L. A. Peletier & J. Serrin, editors, Birkhäuser, Boston (1992), 77–88.Google Scholar
  2. 2.
    F. Bernis & A. Friedman, Higher order nonlinear degenerate parabolic equations, J. Differential Equations 83 (1990), 179–206.Google Scholar
  3. 3.
    F. Bernis, L. A. Peletier & S. M. Williams, Source type solutions of a fourth order nonlinear degenerate parabolic equation, Nonlinear Analysis T. M. A. 18 (1992), 217–233.Google Scholar
  4. 4.
    A. L. Bertozzi, M. P. Brenner, T. F. Dupont & L. P. Kadanoff, Singularities and similarities in interface flows, Trends and perspectives in Applied Mathematics. L. Sirovich, editor, Springer-Verlag, Berlin (1994), 155–208.Google Scholar
  5. 5.
    S. Boatto, L. P. Kadanoff & P. Olla, Travelling wave solutions to thin film equations, Phys. Rev. E 48 (1993), 4423–4431.Google Scholar
  6. 6.
    A. A. Lacey, The motion with slip of a thin viscous droplet over a solid surface, Stud. Appl. Math. 67 (1982) 217–230.Google Scholar
  7. 7.
    S. H. Davis, E. Dibenedetto & D. J. Diller, Some a-priori estimates for a singular evolution equation in thin film dynamics, preprint.Google Scholar
  8. 8.
    M. B. Williams & S. H. Davis, Nonlinear theory of film rupture, Journal of Colloid and Interface Science 90 (1982), 220–228.Google Scholar
  9. 9.
    F. Bernis, Viscous flows, fourth order nonlinear degenerate parabolic equations and singular elliptic problems, to appear in Free Boundary Problems, 1993 Toledo, Diaz, Herrero, Linan & Vazquez, editors, Pitman Research Notes in Mathematics.Google Scholar
  10. 10.
    A. L. Bertozzi, Loss and gain of regularity in a lubrification equation for thin viscous films, to appear in Free Boundary Problems, 1993 Toledo, Diaz, Herrero, Linan & Vazquez, editors, Pitman Research Notes in Mathematics.Google Scholar
  11. 11.
    A. L. Bertozzi & M. Pugh, The lubrification approximation for thin viscous films: regularity and long time behavior of weak solutions, preprint.Google Scholar
  12. 12.
    A. L. Bertozzi & M. Pugh, The lubrification approximation for thin viscous films: the moving contact line with a porous media cut off of the van der Waals interactions, preprint.Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Elena Beretta
    • 1
    • 2
  • Michiel Bertsch
    • 1
    • 2
  • Roberta Dal Passo
    • 1
    • 2
  1. 1.Istituto per le Applicazioni del Calcolo “Mauro Picone”Roma
  2. 2.Dipartimento di MatematicaUniversità di Roma Tor VergataRoma

Personalised recommendations