, Volume 68, Issue 1, pp 118–125 | Cite as

Efficiency of food utilization during fat deposition in the long-distance migratory garden warbler, Sylvia borin

  • Franz Bairlein
Original Papers


  1. 1

    Intake of food, fat, protein and carbohydrates and their fecal output were recorded during the annual body weight cycle of the garden warbler, and old-world longdistance migratory bird species, and the efficiencies of food and nutrient utilization, defined as the ratio (intake-fecal output)/intake, were calculated.

  2. 2.

    Gross food intake and food and nutrient utilization differed significantly between different phases of the birds' body weight cycle.

  3. 3.

    During premigratory fattening, both in “autumn” and “spring”, food intake and utilization of fat, protein and carbohydrates were significantly higher than during the low body weight prefattening periods.

  4. 4.

    The increase in efficiency of nutrient utilization accounted for about 1/3 and the increase in gross food intake about 2/3 of all surplus energy for hyperlipogenesis in the premigratory periods of the garden warbler.

  5. 5.

    The seasonal changes in efficiency of food and nutrient utilization seem to be driven by a circannual timing mechanism.



Carbohydrate Food Intake Bird Species Surplus Energy Migratory Bird 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen WV (1976) Biochemical aspects of lipid storage and utilization in animals. Amer Zool 16:631–647Google Scholar
  2. Baggott GK (1975) Moult, flight muscle “hypertrophy” and premigratory lipid deposition of the juvenile willow warbler Phylloscopus trochilus. J Zool 175:299–314Google Scholar
  3. Baggott GK (1977) Changes in liver and blood composition of the premigratory willow warbler in autumn. Comp Biochem Physiol 56A:461–466Google Scholar
  4. Bairlein F (1983) Seasonal variations of serum glucose levels in a migratory songbird, Sylvia borin. Comp Biochem Physiol 76A:397–399Google Scholar
  5. Bairlein F (1985) Body weights and fat deposition of Palaerctic passerine migrants in the central Sahara. Oecologia 66:141–146Google Scholar
  6. Berthold P (1975) Migration: control and metabolic physiology. In: Farner DS, King JR (eds) Avian Biology, Vol 5. Academic Press, London, New York, pp 77–128Google Scholar
  7. Berthold P (1976) Ammalische und vegetabilische Ernährung omnivorer Singvogelarten: Nahrungsbevorzugung, Jahresperiodik der Nahrungswahl, physiologische und ökologische Bedeutung. J Orn 117:145–209Google Scholar
  8. Berthold P (1984) The endogenous control of bird migration: a survey of experimental evidence. Bird Study 31:19–27Google Scholar
  9. Berthold P, Wwinner E, Klein H (1972a) Cireannuale Periodik bei Grasmücken-I. Periodik des Körpergewichtes, der Mauser und der Nachtunruhe bei Sylvia atricapilla und S. borin unter verschiedenen konstanten Bedingungen. J Orn 113:170–190Google Scholar
  10. Berthold P, Gwinner E, Klein H (1972b) Circannuale Periodik bei Grasmücken-II. Periodik der Gonadengröße bei Sylvia atricapilla und S. borin under verschidenen konstanten Bedingungen. J Orn 113:407–417Google Scholar
  11. Berthold P, Gwinner E, Klein H, Westrich P (1972c) Beziehungen zwischen Zugunruhe und Zugablauf bei Garten- und Mönchsgrasmücken (Sylvia borin and S. atricapilla). Z Tierpsychol 30:26–35Google Scholar
  12. Bhatt D, Chandola A (1985) Circannual rhythm of food intake in spotted munia and its phase relationship with fattening and reproductive cycles. J Comp Physiol A 156:429–432Google Scholar
  13. Blem CR (1976) Patterns of lipid storage and utilization in birds. Amer Zool 16:671–684Google Scholar
  14. Blem CR (1980) The energetics of migration. In: Gauthreaux SA (ed) Animal migration, orientation, and navigation. Academic Press, New York London, pp 175–224Google Scholar
  15. Bolton W (1955) The digestibility of the carbohydrate complex by birds of different ages. J Agr Sci 46:420–424Google Scholar
  16. Brensing D (1977) Nahrungsökologische Untersuchungen an Zugvögeln in einem südwestdeutschen Durchzugsgebiet während des Wegzuges. Vogelwarte 29:44–56Google Scholar
  17. Ceska V (1980) Untersuchungen zu Nahrungsverbrauch, Nahrungsnutzung und Energiehaushalt bei Eulen. J Orn 121:186–199Google Scholar
  18. Clark GA Jr (1979) Body weights of birds: a review. Condor 81:193–202Google Scholar
  19. Cooper TG (1981) Biochemische Arbeitsmethoden. deGruyter, BerlinGoogle Scholar
  20. Dawson WR, Yacoe ME, Marsh RL (1983) Metabolic adjustments of small birds for migration and cold (review). Amer J Physiol 245:755–767Google Scholar
  21. Dixon WJ, Brown MB, Engelman L, Frane JW, Hill MA, Jennrich RI, Toporek JD (1981) BMDP Statistical Software 1981. University of California Press, BerkeleyGoogle Scholar
  22. Dolnik VR, Blyumenthal TI (1967) The bioenergetics of bird migration. Suec Mod Biol 58:280–301Google Scholar
  23. Dolnik VR, Blyumenthal TI (1967) Autumnal premigratory and migratory periods in the chaffinch (Fringilla coelebs) and some other temperate-zone passerine birds. Condor 69:435–468Google Scholar
  24. Duke GE, Ciganek JG, Evanson OA (1973) Food consumption and energy, water and nitrogen budgets in captive great horned owls (Bubo virginianus). Comp Biochem Physiol 44A:283–292Google Scholar
  25. Farner DS, King JR, Stetson MH (1969) The control of fat metabolism in migratory birds. In: Gual C (ed) Progress in Endocrinology. Int Congr Ser 184:152–157Google Scholar
  26. Fisher H (1972) The nutrition of birds. In: Farner DS, King JR (eds) Avian Biology Vol 2. Academic Press, London New York, pp 431–469Google Scholar
  27. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509Google Scholar
  28. Fry CH, Ferguson-Lees IJ, Dowsett RJ (1972) Flight muscle hypertrophy and ecophysiological variation of yellow wagtail Motacilla flava races at Lake Chad. J Zool 167:293–306Google Scholar
  29. Gessman JA (1972) Bioenergetics of the snowy owl (Nyctea scandiaca). Acctic and Alpine Res 4:223–238Google Scholar
  30. Gibb J (1957) Food requirements and other observations of captive tits. Bird Study 4:207–215Google Scholar
  31. Gifford CE, Odum EP (1965) Bioenergetics of lipid deposition in the bobolink a transequatorial migrant. Condor 67:383–403Google Scholar
  32. Graber R (1962) Food and oxygen consumption in three species of owls (Strigidae). Condor 64:473–487Google Scholar
  33. Gwinner E (1977) Circannual rhythms in bird migration. Ann Rev Ecol Syst 8:381–405Google Scholar
  34. Hainsworth FR (1974) Food quality and foraging efficiency. J Comp Physiol 88:425–431Google Scholar
  35. Harvey S, Klandorf H, Phillips JG (1981) Effect of food or water deprivation on circulating levels of pituitary, thyroid and adrenal hormones and on glucose and electrolyte concentrations in domestic ducks (Anas platyrhynchos). J Zool 194:341–361Google Scholar
  36. Hazelwood RL (1984) Pancreatic hormones, insulin/glucagon molar ratios, and somatostatin as determinants of avian carbohydrate metabolism. J Exp Zool 232:647–652Google Scholar
  37. Henry RJ (1964) Clinical Chemistry. Harper & Row, New YorkGoogle Scholar
  38. Hoffmann R, Prinzinger R (1984) Torpor and Nahrungsnutzung bei 4 Mausvogelarten (Coliiformes). J Orn 125:225–237Google Scholar
  39. Holthuijzen AMA, Adkisson CS (1984) Passage rate, energetics, and utilization efficiency of the cedar waxwing. Wils Bull 96:680–684Google Scholar
  40. Jacobs HL (1969) Sensory and metabolic signals in the control of food intake. Ann New York Acad Sci 157:1084–1126Google Scholar
  41. Kendeigh SC (1949) Effect of temperature and season on energy resources of the english sparrow. Auk 66:113–127Google Scholar
  42. King JR (1961a) On the regulation of vernal premigratory fattening in the white-crowned sparrow. Physiol Zool 34:145–157Google Scholar
  43. King JR (1961b) The bioenergetics of vernal premigratory fat deposition in the white-crowned sparrow. Condor 63:128–142Google Scholar
  44. King JR (1963) Autumnal migratory-fat deposition in the whitecrowned sparrow. Proc 13. Int Orn Congr: 940–949Google Scholar
  45. King JR,(1970) Adaptive periodic fat storage by birds. Proc 15. Int Orn Congr: 200–217Google Scholar
  46. King JR, Farner DS (1965) Studies of fat deposition in migratory birds. Ann New York Acad Sci 131:422–440Google Scholar
  47. Klein H, Berthold P, Gwinner E (1973) Der Zug europäischer Garten- und Mönchsgrasmücken. Vogelwarte 27:73–134Google Scholar
  48. Krebs JR, Davies NB (1978) Behavioural Ecology — An Evolutionary Approach. Blackwell, OxfordGoogle Scholar
  49. Leitzmann C (1978) Die physiologische Regulation der Nahrungsaufnahme. Ernährungs-Umschau 25:115–120Google Scholar
  50. Marsh RL (1984) Catabolic enzyme activities in relation to premigratory fattening and muscle hypertrophy in the gray catbird (Dumetella carolinensis). J Comp Physiol 141:417–423Google Scholar
  51. Marsh RL (1984) Adaptations of the gray catbird (Dumetella carolinensis) to long-distance migration: flight muscle hypertrophy associated with elevated body mass. Physiol Zool 57:105–117Google Scholar
  52. Martin EW (1968) The effects of dietary protein on the energy and nitrogen balance in the tree sparrow. Physiol Zool 41:313–331Google Scholar
  53. Mateos GG, Sell JL (1981) Metabolizable energy of supplemental fat as related to dietary-fat level and methods of estimation. Poultry Sci 60:1509–1515Google Scholar
  54. Merkel FW (1958) Untersuchungen über tages- und jahreszeitliche Änderungen im Energiehaushalt gekäfigter Zugvögel. Z vergl Physiol 41:154–178Google Scholar
  55. Moore MC, Donham RS, Farner DS (1982) Physiological preparations for autumnal migration in white-crowned sparrows. Condor 84:410–419Google Scholar
  56. Moss R, Parkinson JA (1972) The digestibility of heather (Calluna vulgaris) by red grouse (Lagopus lagopus scotticus). Brit J Nutr 27:285–298Google Scholar
  57. Nie NH, Hull CH, Jenkins JG, Steinbrenner K, Bent DH (1975) SPSS — Statistical Package for the Social Sciences. McGraw-Hill, New YorkGoogle Scholar
  58. Niethammer G (1937) Handbuch der deutschen Vogelkunde. Akademische Verlagsgesellschaft, LeipzigGoogle Scholar
  59. Odum EP, Perkinson JD (1951) Relation of lipid metabolism to migration in birds. Seasonal variation in body lipids of the migratory white-crowned sparrow. Physiol Zool 25:216–230Google Scholar
  60. Odum EP, Rogers DT, Hicks DL (1964) Homeostasis of the nonfat components of migrating birds. Science 143:1037–1039Google Scholar
  61. Pyke GH, Pulliam HR, Charnov EL (1977) Optimal foraging: a selective review of theory and tests. Quart Rev Biol 52:137–154Google Scholar
  62. Rayner JMV (1982) Avian flight energetics. Ann Rev Physiol 44:109–119Google Scholar
  63. Robbins CT (1983) Wildlife feeding and nutrition. Academic Press, New York LondonGoogle Scholar
  64. Robinzon B, Rogers JG Jr (1979) The effect of gonadal and thyroid hormones on the regulation of food intake and adiposity, and on various endocrine glands, in the redwinged blackbird (Agelaius phoeniceus). Gen Comp Endocrinol 38:135–147Google Scholar
  65. Schildmacher H, Rautenberg W (1952) über die Wirkung kleiner Mengen Thyroxin auf das Körpergewicht bei Finkenvögeln. Biol Zb 71:397–405Google Scholar
  66. Schildmacher H, Steubing L (1952) Untersuchungen zur hormonalen Regulierung des Fettwerdens der Zugvögel im Frühjahr. Biol Zb 71:272–282Google Scholar
  67. Schoener TW (1971) Theory of feeding strategies. Ann Rev Ecol Syst 2:369–404Google Scholar
  68. Seifter S, Dayton S, Novic B, Muntwyler E (1950) The estimation of glycogen with the anthrone reagent. Arch Biochem 25:191–200Google Scholar
  69. Shah RV, Patel ST, Pilo B (1978) Glucose-6-phosphate dehydrogenase and “malic” enzyme activities during adaptive hyperlipogenesis in migratory starling (Sturnus roseus) and white wagtail (Motacilla alba). Can J Zool 56:2083–2087Google Scholar
  70. Sturkie PD (1976) Avian physiology. 3rd ed Springer, BerlinGoogle Scholar
  71. Vallyathan NV, George JC (1964) Glycogen content and phosphorylase activity in the breast muscle of the migratory starling, Sturnus roseus. Pavo 2:55–60Google Scholar
  72. Van de Kamer JH, ten Bokkel Huinink H, Weyers HA (1949) Rapid method for the determination of fat in feces. J Biol Chem 177:347–355Google Scholar
  73. Weppelman RM (1984) Effects of gonadal-steroids and adrenergic agonists on avian growth and feed-efficiency. J Exp Zool 232:461–464Google Scholar
  74. West GC (1960) Seasonal variation in the energy balance of the tree sparrow in relation to migration. Auk 77:306–329Google Scholar
  75. Willson ME, Harmeson JC (1973) Seed preferences and digestive efficiency of cardinals and song sparrows. Condor 75:225–234Google Scholar
  76. Zbinden N (1980) Zur Verdaulichkeit und umsetzbarer Energie von Tetraoniden-Winternahrung und zum Erhaltungsbedarf des Birkhuhns (Tetrax tetrix) in Gefangenschaft mit Hinweisen auf Verdauungsversuche. Vogelwelt 101:1–18Google Scholar
  77. Zimmermann JL (1965) Digestive efficiency and premigratory obesity in the dickeissel. Auk 82:278–279Google Scholar
  78. Ziswiler V (1981) Spezialisation im Ernährungs- und Verdauungssystem der Wirbeltiere: Möglichkeiten und Limiten der Adaptation. Rev Suisse Zool 88:829–834Google Scholar
  79. Ziswiler V, Farner DS (1972) Digestion and digestive system. In: Farner DS, King JR (eds) Avian Biology. Vol 2. Academic Press, London New York, pp 343–430Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Franz Bairlein
    • 1
  1. 1.Physiological Ecology Section, Dept. of ZoologyUniversity of KölnKöln 41Federal Republic of Germany

Personalised recommendations