Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Morphological changes along an altitude gradient and their consequences for an andean giant rosette plant

  • 215 Accesses

  • 44 Citations

Summary

Selected morphological features were measured in five populations of the giant rosette plant Espeletia schultzii occurring along an elevation gradient from 2600 to 4200 m in the Venezuelan Andes. Pith volume per amount of leaf area increases with elevation resulting in significantly larger water storage capacity at higher elevations. Thickness of leaf pubescence and, therefore, leaf boundary layer resistance, also increases with elevation resulting in both potentially higher leaf temperatures relative to air temperature and higher leaf to air vapor pressure gradients. The net effect on transpiration rate would depend on ratios of stomatal to boundary layer resistance and leaf energy balance. At higher elevations the central rosette leaves are more vertically oriented and the leaf bases show a pronounced curvature as the intersection with the main axis is approached. This gives these rosettes a distinctly paraboloid appearance and probably enhances capture and retention of incident long and shortwave radiation by the apical bud and expanding leaves. Features which result in enhanced water storage capacity and higher plant temperatures relative to air temperature without greatly increasing water loss are adaptive in high altitude paramo habitats where water availability and growth are limited by year round low temperatures (mean 2–3° C).

This is a preview of subscription content, log in to check access.

References

  1. Baruch Z (1979) Elevational differentiation in Espeletia schultzii (Compositae), a giant rosette plant of the Venezuelan paramos. Ecology 60:85–98

  2. Baruch Z, Smith AP (1979) Morphological and physiological correlates of niche breadth in two species of Espeletia (Compositae) in the Venezuelan Andes. Oecologia (Berlin) 38:71–82

  3. Campbell GS (1977) An introduction to environmental biophysics. Springer Verlag, Berlin, Heidelberg, New York

  4. Ehleringer J (1981) Leaf absorptances of Sonoran Desert plants. Oecologia (Berlin) 49:366–370

  5. Ehleringer J, Mooney HA (1978) Leaf hairs: Effects on physiological activity and adaptive value to a desert shrub. Oecologia (Berlin) 37:183–200

  6. Gates DM (1980) Biophysical ecology. Springer, New York, Heidelberg, Berlin

  7. Goldstein G, Meinzer FC (1983) Influence of insulating dead leaves and low temperatures on water balance in an Andean giant rosette plant. Plant, Cell and Env 6:649–656

  8. Goldstein G, Meinzer FC, Monasterio MM (1984) The role of capacitance in the water balance of Andean giant rosette species. Plant, Cell and Env 7:179–186

  9. Hedberg O (1964) Features of afroalpine plant ecology. Acta Phytogeogr Suecica 49:1–144

  10. Kaufmann MR (1977) Soil temperature and drying cycle effects on water relations of Pinus radiata. Can J Bot 55:2413–2418

  11. Larcher W (1975) Pflanzenökologische Beobachtungen in der Paramostufe der venezolanischen Anden. Anzeiger der math-naturw Klasse der Österreich Akad Wiss 11:194–213

  12. Mabberly DJ (1973) Evolution in the giant groundsels. Kew Bull 28:61–96

  13. Meinzer FC, Goldstein G (1984) Leaf pubescence and some of its consequences for an Andean giant rosette plant. Ecology (in press)

  14. Monasterio M (1980) Las formaciones vegetales de los páramos de Venezuela. In: M Monasterio (ed), Estudios Ecológicos en Los Páramos Andinos. Ediciones de la Universidad de los Andes, Mérida, Venezuela

  15. Monasterio M, Reyes S (1980) Diversidad ambiental y variación de la vegetación en los páramos de los Andes venezolanos. In M Monasterio (ed), Estudios Ecológicos en Los Páramos Andinos. Ediciones de la Universidad de los Andes, Mérida, Venezuela

  16. Montieth JL (1973) Principles of environmental physics. American Elsvier, New York

  17. Nobel PS (1974) Biophysical Plant Physiology. S.M. Freeman and Co, San Fracnisco

  18. Running SW, Reid PC (1980) Soil temperature influences of Pinus contorta seedlings. Plant Physiol 5:635–640

  19. Smith AP (1974) Bud temperature in relation to nyctinastic leaf movement in an Andean giant rosette plant. Biotropica 6:263–266

  20. Smith AP (1979) The function of dead leaves in Espeletia schultzii (Compositae), an Andean giant rosette plant. Biotropica 11:43–47

  21. Smith AP (1980) The paradox of plant height in an Andean giant rosette species. J Ecol 68:63–73

  22. Smith AP (1981) Growth and population dynamics of Espeletia (Compositae) in the Venezuelan Andes. Smithsonian Contrib Bot 48

  23. Smith WK, Geller GN (1979) Plant transpiration at high elevations: Theory, field measurements, and comparisons with desert plants. Oecologia (Berlin) 41:109–122

  24. Smith WK, Geller GN (1980) Leaf and environmental parameters influencing transpiration: Theory and field measurements. Oecologia (Berlin) 46:308–313

  25. Smith WK, Nobel PS (1977) Influences of seasonal changes in leaf morphology on water-use efficiency for three desert broad-leaf shrubs. Ecology 58:1033–1043

  26. Teskey RO, Hinckley TM, Grier CC (1984) Temperature-induced change in the water relations of Abies amabilis (Dougl.) Forbes. Plant Physiol 74:77–80

Download references

Author information

Correspondence to F. C. Meinzer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Meinzer, F.C., Goldstein, G.H. & Rundel, P.W. Morphological changes along an altitude gradient and their consequences for an andean giant rosette plant. Oecologia 65, 278–283 (1985). https://doi.org/10.1007/BF00379230

Download citation

Keywords

  • Rosette Leave
  • Water Storage Capacity
  • Altitude Gradient
  • Leaf Area Increase
  • Leaf Pubescence