Advertisement

Oecologia

, Volume 50, Issue 1, pp 25–38 | Cite as

Biogenic rock varnishes of the negev desert (Israel) an ecological study of iron and manganese transformation by cyanobacteria and fungi

  • W. E. Krumbein
  • K. Jens
Article

Summary

The ecology of the microflora, which produces rock varnishes in the Negev is described. It is shown that biogenic rock varnishes may form within relatively short periods (1967–1981) on places where pre-existing varnishes were eliminated. Rock varnishes are thin coatings, mainly composed of Fe and Mn hydroxides and clay material. Biogenic rock varnishes form at places where “microbial weathering fronts”, which destroy the rock substrate, advance extremely slowly or come to stillstand, thus enabling the development of biogenic “protective coatings”. Rock varnish is mainly produced by the activity of often lichenised epi- and endolithic cyanobacteria, chemoorganotrophic bacteria, and fungi, which are sometimes associated with the still debatable Metallogenium symbioticum. In cases, where “microbial weathering fronts” reach harder bedrocks during their progress, the then developing rock varnish plays a protective role for the microflora beneath the varnish in formation. This microflora otherwise would be directly exposed to the harsh desert conditions and could not survive. Biogenic rock varnishes are characteristic examples of a microbial ecosystem, which adapted itself to one of the most extreme environments on this planet, i.e. high irradiation, extremely low water activity, no chances of deplacement upwards or downwards and in addition the highest daily changes in temperature and irradiation and humidity one may observe in natural environments. It seems, that the “solution front community” which is trapped on increasingly harder and resistant rocks has evolved the capacity to protect itself from the harsh environmental conditions by the creation of rock varnish as a kind of armour shielding it from the extremes of environmental stress.

Keywords

Water Activity Protective Coating Extreme Environment Thin Coating Daily Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen CC (1978) Desert varnish of the sonoran desert— optical and electron probe microanalysis. J Geol 86:743–752Google Scholar
  2. Balistrieri L, Brewer PG, Murray JW Scavenging residence times and surface chemistry. Woods Hole Oceanographic Inst Contr No 4556, Manuscript (in print)Google Scholar
  3. Bauman AJ (1976) Desert varnish and marine ferromanganese oxide nodules: congeneric phenomena. Nature 259:387–388Google Scholar
  4. Beijerinck MW (1913) Oxydation des Mangancarbonates durch Bakterien und Schimmelpilze. Folia Microbiologica 2:123–134Google Scholar
  5. Benjamini C (1979) Facies relationships in the ‘Avedat Group (Eocene) in the Northern Negev’ Israel. Israel J Earth-Sci 28:47–69Google Scholar
  6. Benuamini C (1980) Planktonic foraminiferal biostratigraphy of the ‘Avedat group (Eocene) in the Northern Negev’, Israel. J Paleont 54:325–358Google Scholar
  7. Berner T., Evenari M (1978) The influence of temperature and light penetration on the abundance of the hypolithic algae in the Negev Desert of Israel. Oceologia (Berl) 33:255–260Google Scholar
  8. Billy C, Cailleux A (1968) Dépôts dendritiques d'oxydes de fer et de manganèse par action bactérienne. CR Ac Sc 266:1643–1645Google Scholar
  9. Blake WP (1957) Geological report; explorations and surveys for a railroad route from the Mississippi river to the Pacific Ocean. 33 Congr S Ex Doc 78:5, pp 370Google Scholar
  10. Blake WP (1905) Superficial blackening and discoloration of rocks especially ion desert regions. Am Inst Min Engenier Trans 35:371–375Google Scholar
  11. Blanck E, Passarge S (1925) Die chemische Verwitterung in der ägyptischen Wüste. Abh Auslandskunde Universität Hamburg Reihe C 6, pp 110, HamburgGoogle Scholar
  12. Blanckenhorn M (1901) Neues zur Geologie und Paläontologie Ägyptens. Z dtsch Geol Ges 53:307–502Google Scholar
  13. Boussingault M (1882) Sur l'apparition du manganèse a la surface des roches. Ann Chimie Physique 27:289–311Google Scholar
  14. Brock TD (1978) The poisoned control in biogeochemical investigations, p 717–726 in W.E. Krumbein (ed) Environmental Biogeochemistry and Geomicrobiology. Ann Arbor Science, Ann ArborGoogle Scholar
  15. Bromfield SM (1956) Oxidation of manganese by soil microorganisms. Australian J sc res biol sc, Serie B 9:228–252Google Scholar
  16. Bromfield SM, Skerman VBD (1950) Biological oxidation of manganese in soils. Soil Science 69:337–348Google Scholar
  17. Cailleux A (1969) Ein Beitrag zu Krumbein: Über den Einfluß der Mikroflora auf die exogene Dynamik (Verwitterung und Krustenbildung). Geol Rundschau 58:363–365Google Scholar
  18. Cameron RE, Blank GB (1966) Desert alage: soil crusts and diaphanous substrata as algal habitats. National Aeronautics Space Administration Technical Report No. 32-971:pp 41Google Scholar
  19. Carr NG, Whitton BA (1973) (ed) The biology of blue-green algae. Botan Monogr 9: pp 676, Blackwell, OxfordGoogle Scholar
  20. Darwin C A naturalists voyage round the world, 2nd Ed Appleton and Co, NY (o. J.)Google Scholar
  21. Darwin C (1958) The voyage of the Beagle, Bantam Classics, p 10–11Google Scholar
  22. Dorn RI, Oberlander TM (1980) The biological origin of desert varnish. Ass Amer Geographers Ann Meeting, abstract, p 207Google Scholar
  23. Dubinina GA (1969) Über die Zugehörigkeit von Metallogenium zur Ordnung der Mycoplasmen (russ). Dokladi AN SSSR 184:1433–1437Google Scholar
  24. Dubinina GA (1970) Untersuchungen über die Morphologie von Metallogenium und die Beziehungen zu Mycoplasma. Z Allgem Mikrobiol 10:309–320Google Scholar
  25. Engel CG, Sharp RP (1958) Chemical data on desert varnish. Bull Geol Soc Amer 69:487–518Google Scholar
  26. Evans LT (1980) An outside view of environmental biogeochemistry, p 1–6. In: PA Trudinger, MR Walter and BJ Ralph (eds) Biogeochemistry of ancient and modern environments, Springer, Berlin Heidelberg New York, pp 723Google Scholar
  27. Evenari M, Shanan L, Tadmor N (1971) The Negev. The challenge of a desert. Harvard Univ Press Cambridge Mass, pp 345Google Scholar
  28. Evenari M, Lange OL, Schulze ED, Kappen L, Buschbom U (1977) Net photosynthesis, dry matter production, and phenological development of apricot trees. (Prunus armeniaca L.) cultivated in the Negev highlands (Israel). Flora 166:383–414Google Scholar
  29. Fraas O (1867) Aus dem Orient. Geologische Beobachtungen am Nil, auf der Sinai-Halbinsel und in Syrien, StuttgartGoogle Scholar
  30. Francis WD (1920) The origin of black coatings of iron and manganese oxides on rocks Proc Soc Queensland 32:110–116Google Scholar
  31. Friedmann I, Galun M (1974) Desert algae, lichens and fungi. In: GW Brown Jr (ed) Desert Biology 2: Acad Press NY, p 166–213Google Scholar
  32. Friedmann I, Lipkin Y, Ocampo-Paus R (1967) Desert algae of the Negev (Israel). Physiologia 6:185–200Google Scholar
  33. Gabrielian GK, Petrosjan AP (1963) Biogenic formation of carbonate crusts on volcanic rocks of the SSR Armenia. Doklady Acad Nauk 37:107–112Google Scholar
  34. Glazovskaya MA (1952) Biological factors of weathering in high mountain regions. Priroda 12:106–110Google Scholar
  35. Gümbel v W (1878) Über die im stillen Ocean auf dem Meeresgrunde vorkommenden Manganknollen. Sitz ber Math-Nat Klasse, KK Akademie Wiss München 8:189–209Google Scholar
  36. Hirsch P (1968) Biology of budding Bacteria IV. Epicellular deposition of iron by aquatic budding bacteria. Arch Mikrobiol 60:201–216Google Scholar
  37. Högbom B (1912) Wüstenerscheinungen in Spitzbergen. Bull Geol Inst Upssala 11:Google Scholar
  38. Höllermann P (1963) “Verwitterungsrinden” in den Alpen. Z Geomorphologie NF 7:172–177Google Scholar
  39. Hooke RL, Yang H, Weiblen PW (1969) Desert varnish: an electron probe study. J Geol 77:275–288Google Scholar
  40. Humboldt A v (1793) Florae Fribergensis specimen plantas cryptogamicas praesertim subterraneas exhibens. Edidit Accedunt Aphorismi en doctrina physiologiae & chemicae plantarum, Berolini, Rottmann, I–XIV and pp 189Google Scholar
  41. Humboldt A v (1807) Ansichten der Natur, in: Reise in die Aequinoctial-Gegenden des neuen Continents, 11:362, Cotta, StuttgartGoogle Scholar
  42. Humboldt A v (1808) Tableux de la nature, ou considérations sur les déserts, sur la physionomie des végétaux, et sur les cataractes de l'Orénoque, 1:pp 204 ParisGoogle Scholar
  43. Humboldt A v, Bonpland A (1805–1835) Reise in die Aequinoctial-Gegenden des neuen Continents in den Jahren 1799–1804, Cotta, Stuttgart u. Tübingen (orig. french, transl. german)Google Scholar
  44. Humboldt A v (1852) Personal narrative translated and edited by thomasina Ross, vol 2243-246 or Humboldt, A v: Views of Natur, english translation)Google Scholar
  45. Hunt CB (1954) Desert Varnish. Science 120:183–184Google Scholar
  46. Jackson TA, Keller WD (1970) Evidence for biogenic synthesis of an unusual ferric oxide mineral during alteration of basalt by a tropical liche. Nature 227:522–523Google Scholar
  47. Kaiser E (1926) Die Diamantenwüste Südwest-Afrikas, 2 Bde, Reimer, BerlinGoogle Scholar
  48. Klappa CF (1978) Biolithogenesis of Microcodium: elucidation. Sedimentology 25:489–522Google Scholar
  49. Klute F, Krasser LM (1940) Über Wüstenblackbildung im Hochgebirge. Petermanns Geograph Mitt 86:21–22Google Scholar
  50. Knauss KG, Ku T-L (1980) Desert varnish: Potential for age dating via uranium-series isotopes. J Geol 88:95–100Google Scholar
  51. Knetsch G (1937) Beiträge zur Kenntnis von Krustenbildungen. Z dtsch geol Ges 89:177–192Google Scholar
  52. Knetsch G (1950) Beobachtungen in der libyschen Sahara. Geol Rundschau 38:40–58Google Scholar
  53. Knetsch G (1960) Über aride Verwitterung unter besonderer Berücksichtigung natürlicher und künstlicher Wände in Ägypten. Z Geomorphol Suppl 1:190–205Google Scholar
  54. Koch R (1961) The etiology of tuberculosis, 1884 (Koch's postulates) p 116–118. In: T Brock (ed) Milestones in Microbiology, Amer Soc Microbiol, Washington DCGoogle Scholar
  55. Krumbein WE (1968) Geomicrobiology and geochemistry of the “Nari-Lime-Crust” (Israel). In: G Müller, GM Friedman (eds), Recent developments in carbonate sedimentology in Central Europe, 137–147Google Scholar
  56. Krumbein WE (1969) Über den Einfluß der Mikroflora auf die exogene Dynamik (Verwitterung und Krustenbildung). Geol Rundschau 58:333–365Google Scholar
  57. Krumbein WE (1971) Biologische Entstehung von Wüstenlack. Umschau 71:240–241Google Scholar
  58. Krumbein WE (1972) Rôle des microorganismes dans la genèse, la diagenèse et la dégradation des roches en place. Rev Écol Biol Sol 9:283–319Google Scholar
  59. Krumbein WE, Altmann HJ (1973) A new method for the detection and enumeration of manganese oxidizing and reducing microorganisms. Helgoländer wiss Meeresunters 25:347–356Google Scholar
  60. Krumbein WE (1979) Über die Zuordnung der Cyanophyten. In: WE Krumbein (ed) Cyanobakterien-Bakterien oder Algen? Universität Oldenburg, Oldenburg, pp 107–130Google Scholar
  61. Krumbein WE, Lange-Giele C (1979) Calcification in a coccoid cyanobacterium associated with the formation of desert stromatolites. Sedimentology 26:593–604Google Scholar
  62. Krumbein WE (1981) Schwermetalltransfer und Schwermetallanreicherung durch Mikroorganismen in BMFT (ed) Expertengespräch “Geomikrobiologie und Rohstoffsicherung”Google Scholar
  63. Lange OL (1969) Die funktionellen Anpassungen der Flechten an die ökologischen Bedingungen arider Gebiete. Ber dtsch Bot Ges 82:3–22Google Scholar
  64. Lange OL, Ziegler H (1963) Der Schwermetallgehalt von Flechten aus dem Acrrosporetum sinopicae auf Erzschlackenhalden des Harzes. Mitt Floristisch-Soziolog. Arbeitsgemeinschaft N F 10:156–183Google Scholar
  65. Lange OL, Koch W, Schulze ED (1969) CO2-Gaswechsel und Wasserhaushalt von Pflanzen in der Negev-Wüste am Ende der Trockenzeit. Ber dtsch Bot Ges 82:39–61Google Scholar
  66. Lange CL, Schulze ED, Kappen L, Buschbom U, Evenari M (1975) Adaptations of desert lichens to drought and extreme temperatures. Environment. Physiol Desert Organisms, pp 21–37Google Scholar
  67. Laudermilk JD (1931) On the origin of desert varnish. American J Sci 21:51–66Google Scholar
  68. Linck G (1901) Über die dunklen Rinden der Gesteine der Wüste. Jenaische Z Naturwiss 35 (N F 28) 329–336Google Scholar
  69. Linck G (1930a) Die Schutzrinden in Handbuch d. Bodenlehre, Springer, Berlin Heidelberg New York, p 490–505Google Scholar
  70. Linck G (1930b) Über Schutzrinden. Chemie der Erde 4:67–69Google Scholar
  71. Molen v d J, Garty J, Aardema BW, Krumbein WE (1980) Growth control of algae and cyanobacteria on historical monuments by a mobile UV unit (MUVU). Studies in Conservation 25:71–77Google Scholar
  72. Monty M (1973) Les nodule de manganèse sont des stromatolithes océaniques. C R. Ac Sc Paris 276:3285–3288Google Scholar
  73. Mortensen H (1950) Das Gesetz der Wüstenbildung. Universitas 5:801–814Google Scholar
  74. Mulder EG (1972) Le cycle biologique tellurique et aquatique du fer et du manganèse. Rev Ecol Biol Sol 9:321–348Google Scholar
  75. Nealson KH (1982, in print) The microbial iron cycle. In WE Krumbein (ed) Microbial geochemistry, Blackwell, OxfordGoogle Scholar
  76. Nealson KH (1982, in print) The microbial manganese cycle. In WE Krumbein (ed) Microbial geochemistry, Blackwell, OxfordGoogle Scholar
  77. Perry RS, Adams JB (1978) Desert varnish: evidence for cyclic deposition of manganese. Nature 276:489–491Google Scholar
  78. Potter RM, Rossman GR (1977) Desert varnish: the importance of clay minerals. Science 196:1446–1448Google Scholar
  79. Potter RM, Rossman GR (1979) The manganese- and iron-oxide mineralogy of desert varnish. Chemical Geology 25:79–94Google Scholar
  80. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J General Microbiology 111:1–61Google Scholar
  81. Rozière de P (1799) Description minéralogique de la vallée de Qosseyr, lue à l'Institut de l'Egypte dans les séances des 21 brumaire et 11 frimaire de l'an 8 par l'auteur (l'an 8=1799)Google Scholar
  82. Scheffer F, Meyer B, Kalk E (1963) Biologische Ursachen der Wüstenlackbildung. Z Geomorphologie NF 7:112–119Google Scholar
  83. Schomburgk O (1841) Reisen in Guiana und am Orinoko 1835–1839, I–XXIV and pp 510, Wigand, LeipzigGoogle Scholar
  84. Schubert W, Giani D, Rongen P, Krumbein WE, Schmidt W (1980) Photoacoustic in-vivo spectra of recent stromatolites. Naturwiss 67:129–132Google Scholar
  85. Schwabe GH (1960a) Blaualgen aus Böden. Forschungen u. Fortschritte 34:194–197Google Scholar
  86. Schwabe GH (1960b) Zur autotrophen Vegetation in ariden Böden. Blaualgen und Lebensraum IV Oesterr Botan Z 107:281–309Google Scholar
  87. Schweinfurth G (1903) Steinzeitliche Forschungen in Oberägypten. Z Ethnol 35:798–822Google Scholar
  88. Schweisfurth R (1971) Manganoxidierende Pilze I Vorkommen, Isolierungen und mikroskopische Untersuchungen. Z Allg Mikrobiol 11:415–430Google Scholar
  89. Schweisfurth R, Gattow G (1966) Untersuchungen über die Röntgenstruktur und Zusammensetzung mikrobiell gebildeter Braunsteine. Z Allg Mikrobiol 6:303–308Google Scholar
  90. Schweisfurth R, Hehn G v (1972) Licht- und elektronenmikroskopische Untersuchungen sowie Kulturversuche zum Metallogenium-Problem. Zbl Bakt Hyg I, Abt Orig A 220:357–361Google Scholar
  91. Summers AO, Silver S (1978) Microbial transformation of metals. Ann Rev Microbiol 32:637–672Google Scholar
  92. Tien Ha-Mung (1968) The biological nature of iron-manganese crusts of soil-forming rocks in Sakhalin mountain soils. Mikrobiologiya 37:749–753Google Scholar
  93. Timonin MI, Illman WI, Hatgerink T (1972) Oxidation of manganous salts of manganese by soil fungi. Canadian J Microbiol 18:793–799Google Scholar
  94. Tyler PA, Marshall KC (1967) Form and function in manganese oxidizing bacteria. Arch Mikrobiol 56:344–353Google Scholar
  95. Vogel S (1955) Niedere “Fensterpflanzen” in der südafrikanischen Wüste. Eine ökologische Schilderung. Beitr Biol Pflanz 31:45–135Google Scholar
  96. Walther J (1891) Die Denudation in der Wüste. Abh math phys Kl Kgl sächs Ges Wiss 16Google Scholar
  97. Walther J (1924) Das Gesetz der Wüstenbildung in Gegenwart und Vorzeit, Quelle & Meyer, Berlin (1900) u. LeipzigGoogle Scholar
  98. Went FW, Stark N (1968) The biological and mechanical role of soil fungi. Proc Nat Acad Sci 60:497–504Google Scholar
  99. White CH (1905) Autophytography: A process of plant fossilization. Amer J Sci 19:231–236Google Scholar
  100. White CH (1924) Desert varnish. Amer J Sc 7:413–420Google Scholar
  101. Willemoes-Suhm R v (1876) Briefe an C Th v Sieboldt von der Challenger-Expedition VII Z wiss Zool 27:98–108Google Scholar
  102. Wolfe RS (1958) Cultivation morphology and classification of the iron bacteria. J Amer waterworks Ass 50:1241–1249Google Scholar
  103. Zahn GW v (1930) Wüstenrinden am Rande der Gletscher. Chemie der Erde 4:145–156Google Scholar
  104. Zavarzin GA (1963) Structure of metallogenium. Mikrobiologiya 32:1020–1023Google Scholar
  105. Zavarzin GA (1964) Metallogenium symbioticum. Z Allg Mikrobiol 4:390–395Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • W. E. Krumbein
    • 1
  • K. Jens
    • 1
  1. 1.Geomicrobiology DivisionUniversity of OldenburgOldenburgFRG

Personalised recommendations