, Volume 68, Issue 4, pp 595–600

A comparison of prey lengths among spiders

  • Wolfgang Nentwig
  • Christian Wissel
Original Papers


Field observations and laboratory experiments were carried out to determine the influence of body length of preys on the acceptance rate by spiders. Feeding experiments with 13 spider species and a model prey (crickets) reveal a decreasing acceptance rate with increasing prey size. Prey sizes of 50–80% of the spiders' size yielded the highest acceptance rates, crickets of double the spiders' size were accepted by two species only. By fitting the acceptance rate Y versus prey size X by Y(x)=Y(0) (1-βx2), two coefficients could be calculated: Y(0), the size-independent palatibility of the prey and β, a coefficient of size-induced refusal of the prey. These values describe the degree of specialisation towards (a) crickets and (b) large prey, respectively. Further comparison showed (a) that labidognath (= araneomorph) spiders do not necessarily subdue larger prey items than orthognath (=mygalmorph) spiders and (b) that webbuilding spiders are superior to non-webbuilding spiders in respect of catching large prey. A modified model of the generalized pattern of the length relations of predator and prey is given with special reference to spiders and compared to other polyphagous predator groups.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bristowe W (1939) The comity of spiders. Ray Society, London vol 2Google Scholar
  2. Buchli H (1969) Hunting behaviour in the Ctenizidae. Am zool 9:175–193Google Scholar
  3. Burgess J (1979) Web signal processing for tolerance and group predation in the social spider Mallos gregalis. Anim Behav 27:157–164Google Scholar
  4. Colquhoun D (1971) Lectures on biostatistics. Clarendon Press, OxfordGoogle Scholar
  5. Eberhard W (1967) Attack behaviour of diguetid spiders and the origin of prey wrapping in spiders. Psyche 74:173–181Google Scholar
  6. Edwards G (1974) Stoidis aurata (Araneae: Salticidae) a spider predator of ants. Fla Entomol 57:337–346Google Scholar
  7. Enders F (1975) The influence of hunting manner on prey size, particularly in spiders with long attack distances (Araneidae, Linyphiidae, and Salticidae). Am Nat 109:737–763Google Scholar
  8. Foelix R (1979) Biologie der Spinnen. Thieme, StuttgartGoogle Scholar
  9. Gettmann W (1976) Beutefang bei Wolfspinnen der Gattung Pirata (Arachnida: Araneae: Lycosidae). Ent Germ 3:93–99Google Scholar
  10. Hespenheide H (1973) Ecological interferences from morphological data. Rev Syst Ecol 4:213–229Google Scholar
  11. Hobby B (1930) Spiders and their insect prey. Proc Entomol Soc London 5:107–110Google Scholar
  12. Holling C (1964) The analysis of complex population processes. Canad Ent 96:335–347Google Scholar
  13. Jackson R (1977) Prey of the jumping spider Phidippus johnsoni (Araneae: Salticidae). J Arachnol 5:145–149Google Scholar
  14. Kaestner A (1969) Lehrbuch der speziellen Zoologie. Fischer, Stuttgart Band I, 1. TeilGoogle Scholar
  15. Morse D (1979) Prey capture by the crab spider Misumena calycina (Araneae:Thomisidae). Oecologia (Berlin). 39:309–319Google Scholar
  16. Melchers M (1963) Zur Biologie und zum Verhalten von Cupiennius salei (Keyserling), einer amerikanischen Ctenide. Zool Jb Syst 91:1–90Google Scholar
  17. Nentwig W (1980) The selective prey of Linyphiid-like spiders and of their space webs. Oecologia (Berlin) 45:236–243Google Scholar
  18. Nentwig W (1982) Beuteanalysen an cribellaten Spinnen (Araneae: Filistatidae, Dictynidae, Eresidae). Entomol Mitt Zool Mus Hamburg 7:233–244Google Scholar
  19. Netwig W (1985a) Feeding ecology of the tropical spitting spider Scytodes longipes (Araneae, Scytodidae). Oecologia (Berlin) 65:284–288Google Scholar
  20. Netwig W (1985b) Social spiders catch larger prey. A study on Anelosimus eximius (Araneae: Theridiidae). Beh Ecol Sociobiol 17:79–85Google Scholar
  21. Nentwig W (1985c) Prey analysis of four species of tropical orbweaving spiders (Araneae: Araneidae) and a comparison with araneids of the temperate zone. Oecologica (Berlin) 66:580–594Google Scholar
  22. Nentwig W (1986) Web and wrapping behaviour of spiders as important tools in evading the defensive behaviour of insects (submitted.)Google Scholar
  23. Nentwig W (in preparation) Prey specialisation in non-webbuilding spidersGoogle Scholar
  24. Nyffeler M, Benz G (1981) Einige Beobachtungen zur Nahrungsökologie der Wolfspinne Pardosa Lugubris (Walck.). Dtsch Ent Z 28:297–300Google Scholar
  25. Robinson M, Valerio C (1977) Attacks on large or heavily defended prey by tropical salticid spiders. Psyche 84:1–10Google Scholar
  26. Robinson M, Mirick H, Turner O (1969) The predatory behaviour of some araneid spiders and the origin of immobilization wrapping. Psyche 77:487–501Google Scholar
  27. Turner M (1979) Diet and feeding phenology of the green lynx spider, Peucetia viridans (Araneae: Oxyopidae). J Arachnol 7:149–154Google Scholar
  28. Vollrath F (1984) Kleptobiotic interactions in invertebrates. In: Producers and scroungers Barnard C (ed), Croom Helm, London pp 61–94Google Scholar

Copyright information

© springer-Verlag 1986

Authors and Affiliations

  • Wolfgang Nentwig
    • 1
  • Christian Wissel
    • 2
  1. 1.Institut für Zoologie der UniversitätRegensburgFederal Republic of Germany
  2. 2.Fachbereich Biologie der UniversitätMarburgFederal Republic of Germany

Personalised recommendations