Advertisement

Oecologia

, Volume 68, Issue 4, pp 507–511 | Cite as

Inter-specific hybridization underlies phenotypic variability in Daphnia populations

  • Hans Georg Wolf
  • Mona A. Mort
Original Papers

Summary

In the glacial lakes of the Palaearctic three species of Cladocera commonly coexist: Daphnia hyalina, D. galeata, and D. cucullata. Frequently these populations contain not only animals which are morphologically typical for the species but also individuals of an intermediate phenotype. Electrophoretic investigations of allozyme-patterns in morphologically typical individuals reveal that each species is fixed for a different allele at the GOT locus. Morphologically intermediate animals are heterozygous for the alleles of the two species which they resemble. The allelic pattern at other loci is also consistent with the assumption that morphological intermediates are formed via interspecific hybridization. Very few backcrosses between galeata-hyalina hybrids and their parent species are found, and there is no indication of gene flow between D. cucullata and the other species.

Keywords

Gene Flow Interspecific Hybridization Parent Species Phenotypic Variability Typical Individual 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brooks JL (1957 a) The Systematics of North American Daphnia. Mem Conn Acad Arts Sci 13:5–180Google Scholar
  2. Brooks JL (1957 b) The species problem in freshwater animals. In: Mayr E (ed), The Species Problem. Am Ass Advmt Sci, Washington, D.C., pp 81–123Google Scholar
  3. Einsle U (1966) Einige Beobachtungen und Hypothesen zur Taxonomie der Gattung Daphnia. Schriften des Vereins für Geschichte des Bodensees und seiner Umgebung 84:1–17Google Scholar
  4. Einsle U (1983) Die Entwicklung und Männchenbildung der Daphnia-Population im Bodensee-Obersee 1956–1980. Schweiz. Z Hydrol 45:321–332Google Scholar
  5. Flößner J (1972) Die Tierwelt Deutschlands, 60. Teil. Gustav Fischer, JenaGoogle Scholar
  6. Ford EB (1975) Ecological Genetics, 4th edn. Chapman and Hall, LondonGoogle Scholar
  7. Hebert PDN (1978) The population biology of Daphnia (Crustacea, Daphnidae). Biol Rev 53:387–426Google Scholar
  8. Hebert PDN (1984) Demographic implications of genetic variation in zooplankton populations. In: Wöhrmann K, Loeschcke V (eds), Population Biology and Evolution. Springer, Berlin, pp 195–207Google Scholar
  9. Hebert PDN (1985) Interspecific hybridization between cyclic parthenogens. Evolution 39:216–220Google Scholar
  10. Hebert PDN, Ward RD (1972) Inheritance during parthenogenesis in Daphnia magna. Genetics 71:639–642Google Scholar
  11. Hutchinson GE (1967) A Treatise on Limnology, vol. II. John Wiley and Sons, New YorkGoogle Scholar
  12. Kerfoot WC (ed) (1980) Evolution and ecology of zooplankton communities. University Press of New England, New HampshireGoogle Scholar
  13. Lieder U (1983) Introgression as a factor in the evolution of polytypical plankton cladocera. Int Revue ges Hydrobiol 68:269–284Google Scholar
  14. Mayr E (1963) Animal species and evolution. Belknap Press of Harvard University Press, Cambridge, MassachusettsGoogle Scholar
  15. Mort MA, Wolf HG (1985) Enzyme variability in large-lake Daphnia populations. Heredity 55:27–36Google Scholar
  16. Wolf HG (1982) A comparison of different electrophoretic techniques for the detection of isozymes in single daphnids. Arch Hydrobiol 95:521–531Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Hans Georg Wolf
    • 1
  • Mona A. Mort
    • 1
  1. 1.Abteilung ÖkophysiologieMax-Planck-Institut für LimnologiePlönFederal Republic of Germany

Personalised recommendations