Advertisement

Current Genetics

, Volume 11, Issue 2, pp 131–137 | Cite as

Characterization of inl+ transformants of Neurospora crassa obtained with a recombinant cosmid-pool

  • Zsigmond Fehér
  • Marcella Schablik
  • Ákos Kiss
  • Attila Zsindely
  • Gábor Szabó
Article

Summary

We constructed a Neurospora crassa gene library in a cosmid vector and used the cosmid-pool DNA to transform an inl, rg Neurospora crassa strain to inositol prototrophy. The inl+ colonies obtained in this experiment proved to be integrative type transformants. Genetic analysis revealed that the integration event occurred at or near the inl locus. In one of the transformants the inl+ trait exhibited mitotic and meiotic instability. In hybridization experiments free plasmids were detected in the F1 progeny of the transformants. We were able to recover eleven different plasmids from the F1 progeny of the transformants. None of these plasmids proved to carry a functional copy of the inl+ gene as judged by its transforming ability. Possible explanations for the observed phenomena are discussed.

Key words

Neurospora crassa Transformation Cosmid library inl locus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akins RA, Lambowitz AM (1985) Mol Cell Biol 5:2272–2278Google Scholar
  2. Botstein D, Davis RW (1982) Principles and practice of recombinant DNA research with yeast. In: Strathern JN, Jones EW, Broach JR (eds) Molecular biology of the yeast Saccharomyces, metabolism and gene expression. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, p 607Google Scholar
  3. Boyer HW, Roulland-Dussoix D (1969) J Mol Biol 41:459–472Google Scholar
  4. Buxton FP, Radford A (1983) Mol Gen Genet 190:403–405Google Scholar
  5. Buxton FP, Radford A (1984) Mol Gen Genet 196:339–344Google Scholar
  6. Case ME (1982) Transformation of Neurospora crassa utilizing recombinant plasmid DNA. In: Hollaender A, deMoss R, Kaplan S, Konisky J, Savage D, Wolfe RS (eds) Genetic engineering of microorganism for chemicals. Plenum Press, New York, p 87Google Scholar
  7. Case ME, Schweizer M, Kushner SR, Giles NH (1979) Proc Natl Acad Sci USA 76:5259–5263Google Scholar
  8. Clarke L, Carbon J (1979) Cell 9:91–99Google Scholar
  9. Davis RH, deSerres FJ (1970) Genetic and microbiological research techniques for Neurospora crassa. Methods Enzymol 17A:79Google Scholar
  10. Dhawale SS, Paietta J, Marzluf GA (1984) Curr Genet 8:77–79Google Scholar
  11. Fehér Z (1984) Neurospora Newslett 31:32Google Scholar
  12. Fehér Z, Schablik M (1983) Neurospora Newslett 30:32Google Scholar
  13. Fehér Z, Schablik M, Kiss Á, Zsindely A, Szabó G (1985) Neurospora Newslett 32:8–9Google Scholar
  14. Grant DM, Lambowitz AM, Rambosek JA, Kinsey JA (1984) Mol Cell Biol 4:2041–2051Google Scholar
  15. Henikoff S, Tatchell K, Hall BD, Nasmyth KA (1981) Nature (London) 289:33–37Google Scholar
  16. Hinnen A, Meyhack B (1982) Vectors for cloning in yeast. In: Hofschneider PH, Goebel W (eds) Current topics of microbiology and immunology. Springer, New York, p 101Google Scholar
  17. Hohn B (1979) Methods Enzymol 68:299Google Scholar
  18. Hohn B, Hinnen A (1980) Cloning with cosmids in E. coli and yeast. In: Setlow JK, Hollaender A (eds) Genetic engineering, vol 2. Plenum Press, New York, p 169Google Scholar
  19. Kiss A, Baldauf F (1983) Gene 21:111–119Google Scholar
  20. Krumlauf R, Marzluf GA (1979) Biochemistry 18:3705–3713Google Scholar
  21. Kuiper MTR, de Vries H (1985) Curr Genet 9:471–477Google Scholar
  22. Maniatis T, Hardison RC, Lacy E, Lauer J, O'Connel C, Quon D, Sim DK, Efstratiadis A (1978) Cell 15:687–701Google Scholar
  23. Maniatis T, Fritsch EF, Sambrook H (1982) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  24. Maxwell JB, Ichertz G, Jambretz M, Wohrle T (1977) Neurospora Newslett 24:14Google Scholar
  25. Mishra NC, Tatum EL (1972) Proc Natl Acad Sci USA 69:313–317Google Scholar
  26. Murray NE, Bruce SA, Murray K (1979) J Mol Biol 132:493–505Google Scholar
  27. Paietta J, Marzluf GA (1985) Curr Genet 9:383–388Google Scholar
  28. Perkins DA, Radford A, Newmeyer D, Bjorkman M (1982) Microbiol Rev 46:426–570Google Scholar
  29. Rigby PJW, Dieckmann M, Rhodes C, Berg P (1977) J Mol Biol 113:237–251Google Scholar
  30. Roberts RJ (1982) Nucleic Acids Res 10:r117-r144Google Scholar
  31. Schablik M, Németi FM, Szabó G (1983) Neurospora Newslett 30:17Google Scholar
  32. Stohl LL, Lambowitz AM (1983) Proc Natl Acad Sci USA 80:357–380Google Scholar
  33. Stohl LL, Akins RA, Lambowitz AM (1984) Nucleic Acids Res 12:6169–6178Google Scholar
  34. Struhl K, Stinchcomb DT, Scherer S, Davis RW (1979) Proc Natl Acad Sci USA 76:1035–1039Google Scholar
  35. Zsindely A, Szabolcs M, Kávai M, Schablik M, Aradi J, Szabó G (1979) Acta Biol Acad Sci Hung 30:141–149Google Scholar
  36. Zsindely A, Kiss Á, Schablik M, Szabolcs M, Szabb G (1983) Biochim Biophys Acta 741:273–278Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Zsigmond Fehér
    • 1
  • Marcella Schablik
    • 1
  • Ákos Kiss
    • 1
  • Attila Zsindely
    • 1
  • Gábor Szabó
    • 1
  1. 1.Departments of Biology and BiochemistryUniversity Medical SchoolDebrecenHungary

Personalised recommendations