Advertisement

Current Genetics

, Volume 11, Issue 2, pp 97–106 | Cite as

Trehalose and maltose metabolism in yeast transformed by a MAL4 regulatory gene cloned from a constitutive donor strain

  • Dulce E. de Oliveira
  • Manuel Arrese
  • Getacew Kidane
  • Anita D. Panek
  • James R. Mattoon
Original Articles

Summary

A 6.8 kb fragment of DNA containing the regulatory sequence MAL4p has been cloned from a genomic library prepared from Saccharomyces cerevisiae strain 1403-7A which ferments maltose constitutively. The library was prepared by ligation of 5–20 kb Sau3AI restriction fragments of total yeast DNA into the BamH1 restriction site of shuttle vector YEp13. A restriction map of the cloned fragment indicates that it encompasses a 2.6 kb segment which closely resembles the regulatory MAL6 gene previously identified (Needleman et al. 1984). The hybrid plasmid, p(MAL4p)4, could transform maltose-nonfermenting strains which contain cryptic α-glucosidase and maltose permease genes (malp MALg), but could not transform strains containing a functional regulatory sequence and a defective maltase-permease region (MAlp malg). A correlated absence of maltase and permease DNA from the cloned fragment was indicated by the restriction map. Although the cloned DNA fragment was derived from a constitutive strain, maltose fermentation and α-glucosidase formation by yeast transformed with p(MAL4p)4 was largely inducible by maltose and sensitive to catabolite repression. Moreover, the active trehalose accumulation pattern (TAC(+) phenotype) linked to the complete MAL4 locus in strain 1403-7A and other constitutive MAL strains (Oliveira et al. 1981b) was not found in p(MAL4p)4 transformants. It may be concluded that constitutivity of maltose fermentation and the associated active trehalose accumulation are not merely consequences of a cis-dominant mutation causing constitutive formation of the MALp regulatory product. Moreover, constitutivity may not be caused solely by a mutation within the structural region of the MALp gene.

Key words

Maltose fermentation Regulatory genes Trehalose Gene cloning S. cerevisiae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnett JA (1976) The utilization of sugars by yeast. In: Tipson RS, Horton DR (eds) Advances in carbohydrate chemistry and biochemistry, vol 32. Academic Press, New York, pp 136–144Google Scholar
  2. Berge AMA ten (1973) Thesis,, University of Utrecht, The NetherlandsGoogle Scholar
  3. Berge AMA ten, Zoutwelle G, Poll KW van de, Bloemers HPJ (1973) Mol Gen Genet 125:134–146Google Scholar
  4. Brin M (1966) Methods Enzymol 9:506–514Google Scholar
  5. Borach JR, Strathern JN, Hicks JB (1979) Gene 8:121–133Google Scholar
  6. Chow T, Godenthal MJ, Cohen JD, Hedge M, Marmur J (1983) Mol Gen Genet 191:366–371Google Scholar
  7. Clewell DB (1972) J Bacteriol 110:667–676Google Scholar
  8. Cohen JD, Goldenthal MJ, Buchferer B, Marmur J (1984) Mol Gen Genet 196:208–216Google Scholar
  9. Cohen JD, Goldenthal MJ, Chow T, Buchferer B, Marmur J (1985) Mol Gen Genet 200:1–8Google Scholar
  10. Falco SC, Rose M, Botstein D (1983) Genetics 105:843–859Google Scholar
  11. Federoff HJ, Cohen JD, Ecceleshall TR, Needleman RB, Buchferer BA, Gialcalone J, Marmur J (1982) J Bacteriol 149:1064–1070Google Scholar
  12. Hinnen A, Hicks JB, Fink GR (1978) Proc Natl Acad Sci USA 75:1929–1933Google Scholar
  13. Ito H, Fukuda Y, Murata K, Kimura A (1983) J Bacteriol 153:163–168Google Scholar
  14. Khan NA (1979) Mol Gen Genet 172:281–285Google Scholar
  15. Khan NA, Eaton NR (1971) Mol Gen Genet 112:317–322Google Scholar
  16. Khan NA, Zimmermann FK, Eaton NR (1973) Mol Gen Genet 124:365–367Google Scholar
  17. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  18. Michels G, Needleman RB (1984) J Bacteriol 157:949–952Google Scholar
  19. Mortimer RK, Hawthorne DC (1969) Yeast genetics. In: Rose AH, Harrison TS (eds) The yeast. Academic Press, London New York, pp 385–460Google Scholar
  20. Nasmyth KA, Reed SI (1980) Proc Natl Acad Sci USA 77:2119 2123Google Scholar
  21. Naumov GI (1971) Genetika 7:141–148Google Scholar
  22. Naumov GI (1976) Genetika 12:87–100Google Scholar
  23. Needleman RB, Kaback DD, Dubin RA, Perkins EL, Rosenberg NG, Sutherland KA, Forrest DB, Michels CA (1984) Proc Natl Acad Sci USA 81:2811–2815Google Scholar
  24. Oliveira DE, Santos-Neto ALC, Panek AD (1981a) Anal Biochem 113:188–192Google Scholar
  25. Oliveira DE, Rodrigues EGC, Mattoon JR, Panek AD (1981b) Curr Genet 3:235–242Google Scholar
  26. Operti MS, Oliveira DE, Freitas-Valle AB, Oestreicher EG, Mattoon JR, Panek AD (1982) Curr Genet 5:69–76Google Scholar
  27. Panek AD, Sampaio AL, Braz GC, Mattoon JR (1979) Cell Mol Biol 25:334–354Google Scholar
  28. Raabo E, Terkildsen TC (1960) Scan J Clin Lab Invest 12:402–407Google Scholar
  29. Rodicio R, Zimmermann FK (1985a) Curr Genet 9:547–551Google Scholar
  30. Rodicio R, Zimmermann FK (1985b) Curr Genet 9:539–545Google Scholar
  31. Rodicio R, Schimitt HD, Heinisch S, Zimmermann FK (1984) Mol Gen Genet 197:491–496Google Scholar
  32. Sherman F (1963) Genetics 48:375–385Google Scholar
  33. Steckowski U (1969) Thesis, Technische Universität BerlinGoogle Scholar
  34. Trevelyan WE, Harrison JC (1952) Biochem J 50:298–302Google Scholar
  35. Zimmermann FK, Eaton NR (1974) Mol Gen Genet 134:261–272Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Dulce E. de Oliveira
    • 1
  • Manuel Arrese
    • 3
  • Getacew Kidane
    • 2
  • Anita D. Panek
    • 1
  • James R. Mattoon
    • 3
  1. 1.Departamento de Bioquimica, Instituto de QimicaUniversidade Federal do Rio de Janeiro, Cidade UniversitariaRio de Janeiro, RJBrasil
  2. 2.Departamento de Biologia MolecularInstitute Oswaldo CruzRio de JaneiroBrasil
  3. 3.Department of BiologyUniversity of ColoradoColorado SpringsUSA

Personalised recommendations