This is a preview of subscription content, log in to check access.

## References

- [BC]
A. Bahri & J.-M. Coron, The Scalar-Curvature Problem on the Standard Three-dimensional Sphere.

*J. Funct. Anal.***95**(1991) 106–172. - [BE1]
G. Bianchi & H. Egnell, Local Existence and Uniqueness of Positive Solutions of the Equation \(\Delta u + (1 + \varepsilon \varphi )u^{\frac{{n + 2}}{{n - 2}}} = 0\), in

**R**^{n}and a Related Equation. In: N. G. Lloyd, W. M. Ni, L. A. Peletier & J. Serrin (eds.)*Nonlinear Diffusion Equations and their Equilibrium States. Proceeedings*, Gregynog 1989, pp. 111–128, Birkhäuser, 1992. - [BE2]
G. Bianchi & H. Egnell, An ODE Approach to the Equation \(\Delta u + Ku^{\frac{{n + 2}}{{n - 2}}} = 0\), in

**R**^{n}.*Math. Z.***210**(1992) 137–166. - [BE3]
G. Bianchi & H. Egnell, A Note on the Sobolev Inequality.

*J. Funct. Anal.***100**(1991) 18–24. - [CY]
A. Chang & P. Yang, A Perturbation Result in Prescribing Scalar Curvature on

**S**^{n}. Preprint. - [DN]
W.-Y. Ding & W.-M. Ni, On the Elliptic Equation \(\Delta u + Ku^{\frac{{n + 2}}{{n - 2}}} = 0\) and Related Topics.

*Duke Math. J.***52**(1985) 485–506. - [EG1]
H. Egnell, Positive Solutions of Semilinear Elliptic Equations in Cones.

*Trans. Amer. Math. Soc.*(to appear). - [EG2]
H. Egnell, Asymptotic Results for Finite Energy Solutions of Semilinear Elliptic Equations.

*J. Diff. Eqs.*(to appear). - [ES]
J. Escobar & R. Schoen, Conformal Metrics with Prescribed Scalar Curvature.

*Invent. Math.***86**(1986) 243–254. - [KW]
J. Kazdan & F. Warner, Existence and Conformal Deformations of Metrics with Prescribed Gaussian and Scalar Curvature.

*Ann. of Math.***101**(1975) 317–331. - [LI]
P. L. Lions, The Concentration-Compactness Principle in the Calculus of Variation. The limit case.

*Rev. Mat. Ibero.***1-1**(1985) 145–201;**1–2**(1985) 45–121. - [LL]
C.-S. Lin & S.-S. Lin, Positive Radial Solutions for \(\Delta u + Ku^{\frac{{n + 2}}{{n - 2}}} = 0\) and related topics.

*Appl. Anal.***38**(1990) 121–159. - [ST]
M. Struwe, A Global Compactness Result for Elliptic Boundary Problems Involving Limiting Nonlinearities.

*Math. Z.***187**(1984) 511–517.

## Author information

### Affiliations

## Additional information

*Communicated by* J. Serrin

## Rights and permissions

## About this article

### Cite this article

Bianchi, G., Egnell, H. A variational approach to the equation \(\Delta u + Ku^{\frac{{n + 2}}{{n - 2}}} = 0\)in **R**
^{n}
.
*Arch. Rational Mech. Anal.* **122, **159–182 (1993). https://doi.org/10.1007/BF00378166

Received:

Issue Date:

### Keywords

- Neural Network
- Complex System
- Nonlinear Dynamics
- Electromagnetism
- Variational Approach