, Volume 77, Issue 3, pp 307–312 | Cite as

Estuarine gradients and the growth and development of Agapanthia villosoviridescens, (Coleoptera), a stem-borer of the salt marsh halophyte Aster tripolium

  • M. A. Hemminga
  • J. van Soelen
Original Papers


Phytophagous insects of estuarine salt marshes which live inside their host plants are not directly exposed to estuarine gradients. Host plant quality, however, may change along the estuary as a result of the direct effects of these gradients; as a consequence growth and development of endophagous insects may be influenced. The results of a study of the life cycle of Agapanthia villosoviridescens (Coleoptera, Cerambycidae), a stem-borer of the halophyte Aster tripolium, on three salt marshes along the Westerschelde estuary (the Netherlands) are in line with this hypothesis. It was shown that in upstream direction (1) mean larval weights were consistently higher during the entire period of larval development; (2) the percentage of late instars on a given sampling date generally was higher; (3) the percentage of larvae which underwent successful metamorphosis increased. Furthermore, (4) dry weight of the imagos was highest on the least saline marsh. The effects of estuarine gradients on the Aster host plants was indicated by differences in growth and chloride content between the populations of the three marshes. The non-overlapping geographic distribution of Agapanthia villosoviridescens and its host plant Aster tripolium on the Westerschelde salt marshes may be related to the effects of estuarine gradients on the suitability of the host plant.

Key words

Insect-plant interactions Larval development Host plant quality Salt marshes Estuarine gradients 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Åhman I (1985). Larval feeding period and growth of Dasineura brassicae (Diptera) on Brassica host plants. Oikos 44:191–194Google Scholar
  2. Austenfeld FA (1974) Untersuchungen zum Ionenhaushalt von Salicornia europaea L. unter besonderer Berücksichtigung des Oxalats in Abhängigkeit von der Substratsalinität. Biochem Physiol Pflanz 165:303–316Google Scholar
  3. Ayres MP, MacLean SF (1987) Molt as a component of insect development: Galerucella sagittariae (Chrysomelidae) and Epirrita autumnata (Geometridae). Oikos 48:273–279Google Scholar
  4. Baumeister W, Schmidt L (1962) Über die Rolle des Natriums im pflanzlichen Stoffwechsel. Flora 152:24–56Google Scholar
  5. Beeftink WG (1957) De buitendijkse terreinen van de Westerschelde en de Zeeschelde. Natuurwetenschappelijke betekenis, bedreiging door het Deltaplan en behoud voor de toekomst. Nat Landschap Tijdchr Contact-Comm Nat Landschapsbescherming 11:33–51Google Scholar
  6. Beeftink WG (1976) The coastal salt marshes of Western and Northern Europe: an ecological and phytosociological approach. In: Chapman VJ (ed) Wet coastal ecosystems. Elseviers, Amsterdam London New York, pp 109–155Google Scholar
  7. Beeftink WG, Daane MC, Van Liere JM, Nieuwenhuize J (1977) Analysis of estuarine soil gradients in salt marshes of the southwestern Netherlands with special reference to the Scheldt estuary. Hydrobiologia 52:93–106Google Scholar
  8. Bultman TL, Faeth SH (1986) Effect of within-leaf density and leaf size on pupal weight of the leaf-mining insect, Cameraria sp. nov. (Lepidoptera: Gracillariidae). Southwestern Nat 46:311–316Google Scholar
  9. Cates RG, Henderson CB, Redak RA (1987) Responses of the western spruce budworm to varying levels of nitrogen and terpenes. Oecologia (Berlin) 7:312–316Google Scholar
  10. Cavalieri AJ, Huang AHC (1979) Evaluation of proline accumulation in the adaptation of diverse species of marsh halophytes to the saline environment. Am J Bot 66:307–312Google Scholar
  11. Cavalieri AJ, Huang AHC (1981) Accumulation of proline and glycinebetaine in Spartina alterniflora Loisel. in response to NaCl and nitrogen in the marsh. Oecologia (Berlin) 49:224–228Google Scholar
  12. De Pauw N (1975) Bijdrage tot de kennis van milieu en plankton in het Westerschelde estuarium. Thesis Rijksuniversiteit Gent, BelgiumGoogle Scholar
  13. Dyar HG (1890) The number of molts in Lepidopterous larvae. Psyche 5:420–422Google Scholar
  14. Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol 28:89–121Google Scholar
  15. Flowers TJ, Hajibagheri MA, Clipson NJW (1986) Halophytes. Q Rev Biol 61:313–337Google Scholar
  16. Gillham ME (1957) Vegetation of the Exe estuary in relation to water salinity. J Ecol 45:735–756Google Scholar
  17. Heydemann B (1979) Responses of animals to spatial and temporal environmental heterogeneity within salt marshes. In: Jefferies RL, Davy AJ (eds) Ecological processes in coastal environments. Blackwell, Oxford, pp 145–163Google Scholar
  18. Horion A (1974) Faunistik der Mitteleuropäischen Käfer, Band XII: Cerambycidae. Überlingen, BodenseeGoogle Scholar
  19. Montfort C, Brandup W (1927) Physiologische und pflanzengeographische Seesalzwirkungen. II. Ökologische Studien über Keimung und erste Entwicklung bei Halophyten. Jahrb Wiss Bot 66:902–946Google Scholar
  20. Poljakoff-Mayber A (1975) Morphological and anatomical changes in plants as a response to salinity stress. In: Poljakoff-Mayber A, Gale J (eds) Plants in saline environments. Springer, Berlin Heidelberg New York, pp 97–117Google Scholar
  21. Pritchard DW (1967) What is an estuary. Physical viewpoint. Am Ass Adv Sci Publ 83:3–5Google Scholar
  22. Pullin AS (1987) Changes in leaf quality following clipping and regrowth of Urtica dioica, and consequences for a specialist insect herbivore, Aglais urticae. Oikos 49:39–45Google Scholar
  23. Schroeder LA (1986) Changes in tree leaf quality and growth performance of Lepidopteran larvae. Ecology 67:1628–1636Google Scholar
  24. Scriber JM (1984) Host plant suitability. In: Carde RT, Bell WJ (eds) Chemical ecology of insects. Chapman Hall, London, pp 159–202Google Scholar
  25. Scriber JM, Slansky F (1981) The nutritional ecology of immature insects. Annu Rev Entomol 26:183–211Google Scholar
  26. Shennan C, Hunt R, MacRobbie EAC (1987a) Salt tolerance in Aster tripolium L. I. The effect of salinity on growth. Plant Cell Environ 10:59–65Google Scholar
  27. Shennan C, Hunt R, MacRobbie EAC (1987b) Salt tolerance in Aster tripolium L. II. Ionic regulation. Plant Cell Environ 10:67–74Google Scholar
  28. Stienstra AW (1986) Nitrate accumulation and growth of Aster trioplium L with a continuous and intermittent nitrogen supply. Plant Cell Environ 9:307–313Google Scholar
  29. Storey R, Wyn-Jones RG (1975) Betaine and choline levels in plants and their relationship to sodium chloride stress. Plant Sci Lett 4:161–168Google Scholar
  30. Treichel S (1975) Der Einfluß von NaCl auf der Prolin-konzentration verschiedener Halophyten. Z Pflanzenphysiol 76:56–68Google Scholar
  31. Van Soelen J, Markussee MM (1983) Notes on the distribution of some insect species living in the stems of Aster tripolium L (Compositae) Entomol Ber 43:124–127Google Scholar
  32. Wetteveen J (1986) Marine Littoral Collembola. Thesis, Vrije Universiteit Amsterdam, The NetherlandsGoogle Scholar
  33. Yeo AR (1974) Salt tolerance in the halophyte Suaeda maritima L Dum. Thesis, University of Sussex, EnglandGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • M. A. Hemminga
    • 1
  • J. van Soelen
    • 1
  1. 1.Delta Institute for Hydrobiological ResearchYersekeThe Netherlands

Personalised recommendations