Advertisement

Contributions to Mineralogy and Petrology

, Volume 80, Issue 4, pp 324–333 | Cite as

Water in microcrystalline quartz of volcanic origin: Agates

  • O. W. Flörke
  • B. Köhler-Herbertz
  • K. Langer
  • I. Tönges
Article

Abstract

Agates of volcanic origin, containing the different quartz species, fibrous, length-fast chalcedony (CH), granular fine quartz (FQ), and fibrous, length-slow, to lepidospheric quartzine (QN), have been investigated to evaluate possible relations between microstructure, i.e. crystallite size and texture, refractive indices, densities, contents of trace elements and of “water”, as well as dehydration behaviour. By means of near infrared spectroscopy, total “water” contents \(c_{({\text{H}}_{\text{2}} {\text{O}}){\text{tot}}} \), could be differentiated quantitatively into contents of molecular “water”, \(c_{{\text{(H}}_{\text{2}} {\text{O)mol}}} \), and silanole-group “water”, \(c_{{\text{(H}}_{\text{2}} {\text{O)SiOH}}} \). Despite the low total “water” contents of the agates studied (\(c_{({\text{H}}_{\text{2}} {\text{O}}){\text{tot}}} \) between 1 and 2 wt.%), near infrared spectroscopy results in reliable data on \(c_{{\text{(H}}_{\text{2}} {\text{O)mol}}} \) and \(c_{{\text{(H}}_{\text{2}} {\text{O)SiOH}}} \).

Wall-layering CH consists of fibrous quartz crystals and exhibits higher C-ratios, \({{C = c_{{\text{(H}}_{\text{2}} {\text{O)SiOH}}} } \mathord{\left/ {\vphantom {{C = c_{{\text{(H}}_{\text{2}} {\text{O)SiOH}}} } c}} \right. \kern-\nulldelimiterspace} c}_{{\text{(H}}_{\text{2}} {\text{O)tot}}} \), than horizontally layered FQ which consists predominantly of granular quartz crystals (CCH=0.45±0.11 (N=6), CFQ=0.36±0.10 (N=4). This result is interpreted to be due to analogy with the behaviour of C-ratios in fluid phase-deposited opals-AN (hyalithe) and liquid phase-deposited opals-AG (non-crystalline opal) or -CT (common opal) (Langer and Flörke 1974).

Translucent layers of CH show mostly lower refractive indices, when measured parallel than when measured perpendicular to the axes of the quartz fibers. The same is true for milky layers of CH. Crystallite sizes are smaller in the latter than in the former.

For all samples studied, exists a positive correlation between σ at% (1/2Ca+1/2Mg+Na+K+Li) and σ at% (Al3++Fe3+). This indicates that at least parts of (A13++ Fe3+) substitute for Si in the quartz structure. The charge is balanced by incorporation of di- and mono-valent cations in structural interstices. When the quantity at % H+, as obtained from \(c_{{\text{(H}}_{\text{2}} {\text{O)SiOH}}} \), is included into the sum σ at% (1/2 Me2++Me+), the above correlation is destroyed. This result could be indicative for a strong concentration of the Si-OH groups in the surface of the quartz microcrystallites.

Keywords

Quartz Refractive Index Crystallite Size Quartz Crystal Near Infrared Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bank H (1970) Zur Geologie von Rio Grande do Sul/Brasilien und seiner Amethyst- und Achatvorkommen. Abh Hess Lan-desamtes Bodenforsch, 56, Falke-Festschrift: 214–227Google Scholar
  2. Braitsch O (1957) Über die natürlichen Faser- und Aggregationstypen beim SiO2, ihre Verwachsungsformen, Richtungsstatistik und Doppelbrechung. Heidelbg Beitr Mineral Petrogr 5:331–372Google Scholar
  3. Buch L (1824) In: Leonhardt KC (ed) Mineralog Taschenbuch, p 483Google Scholar
  4. Eberius E (1956) Wasserbestimmung mit Karl-Fischer-Lösung. Monogr Angew Chemie 65, Verl Chemie, WeinheimGoogle Scholar
  5. Ehrlich P (1949) Über die binären Systeme des Titans mit den Elementen Stickstoff, Kohlenstoff, Bor und Beryllium. Z Anorg Allg Chem 259:1–41Google Scholar
  6. Flörke OW (1962) Untersuchungen an amorphem und mikro-kristallinem SiO2. Chem Erde 22:91–110Google Scholar
  7. Flörke OW (1972) Transport and deposition of SiO2 with H2O under supercritical conditions. Krist Tech 7:159–166Google Scholar
  8. Flörke OW, Jones JB, Segnit ER (1973) The genesis of hyalite. Neues Jahrb Mineral Monatsh 82–89Google Scholar
  9. Flörke OW (1976) Hydrothermal transport and deposition of silica. Conf Rep No C00-2607-4 Ntl Techn Inf Serv US Dept Comm, Springfield VA 22161, USAGoogle Scholar
  10. Folk R, Weavers CF (1952) A study of the texture and composition of chert. Am J Sci 250:498–510Google Scholar
  11. Frondel C (1962) The system of mineralogy, Vol III. Silica minerals. Wiley, New YorkGoogle Scholar
  12. Jones JB, Segnit ER (1971) The nature of opal I. Nomenclature and constituent phases. J Geol Soc Austr 18:57–68Google Scholar
  13. Knauth LP, Epstein S (1976) Hydrogen and oxygen isotope ratios in nodular and bedded cherts. Geochim Cosmochim Acta 40:1095–1108Google Scholar
  14. Klug HP, Alexander E (1974) X-ray diffraction procedure. Wiley, New York, 2nd edGoogle Scholar
  15. Micheelsen H (1966) The structure of dark flint from Stevns, Denmark. Dansk Geologisk Forening, Meddeleser, Kobenhavn 16:285–368Google Scholar
  16. Langer K, Flörke OW (1974) Near infrared absorption spectra (4,000–9,000 cm−1) of opals and the role of “water” in these SiO2 · n H2O minerals. Fortschr Mineral 52:17–51Google Scholar
  17. Nacken R (1917) Über die hydrothermale Entstehung der Achatmandeln in Gestein. Naturwiss 5:269–274, 292–296Google Scholar
  18. Nacken R (1948/49) Über die Nachbildung von Chalcedon-Mandeln. Natur Volk, Frankfurt, 78/79:2–8Google Scholar
  19. Reis OM (1916/17 and 1918/19) Einzelheiten über den Bau und die Entstehung von Enhydros, Kalzitachat und Achat. Geogn Jahresh 29/30:81–298, 31/32:1–92Google Scholar
  20. Sunagawa I, Otha E (1976) Mechanism of formation of chalce-dony. Sci Rep Tohoku Univ Ser III, 13 (2): 131–146Google Scholar
  21. Tönges I, Flörke OW, Langer K (1977) Wasser in Chalcedon. Fortschr Mineral 55, Beih 1:139–140Google Scholar
  22. Walger E (1954) Das Vorkommen von Uruguay-Achaten bei Flon-heim in Rheinhessen, seine tektonische Auswertung und seine Bedeutung für die Frage nach der Achatbildung. Jber Mitt Oberrh Geol Ver NF, 36:20–31, Tafel 2–3Google Scholar
  23. White JF, Corvin JF (1961) Synthesis and origin of chalcedony. Am Mineral 46:112–119Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • O. W. Flörke
    • 1
  • B. Köhler-Herbertz
    • 1
  • K. Langer
    • 1
    • 2
  • I. Tönges
    • 1
  1. 1.Institut für MineralogieRuhr-Universität BochumBochumFederal Republic of Germany
  2. 2.Institut für Mineralogie und KristallographieTechnische Universität BerlinBerlin 12

Personalised recommendations