Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Ellipticity and deformations with discontinuous gradients in finite elastostatics

  • 146 Accesses

  • 80 Citations

This is a preview of subscription content, log in to check access.

References

  1. 1.

    J. K. Knowles & E. Sternberg, On the failure of ellipticity of the equations for finite elastostatic plane strain, Archive for Rational Mechanics and Analysis 63 (1977) 321–336.

  2. 2.

    R. Abeyaratne, Discontinuous deformation gradients in plane finite elastostatics of incompressible materials, Journal of Elasticity 10 (1980) 255–293.

  3. 3.

    L. Zee & E. Sternberg, Ordinary and strong ellipticity in the equilibrium theory of incompressible hyperelastic solids, Archive for Rational Mechanics and Analysis 83 (1983) 53–90.

  4. 4.

    H. C. Simpson & S. J. Spector, On copositive matrices and strong ellipticity for isotropic elastic materials, Archive for Rational Mechanics and Analysis 84 (1983) 55–68.

  5. 5.

    R. Abeyaratne & J. K. Knowles, Equilibrium shocks in plane deformations of incompressible elastic materials, Journal of Elasticity, to appear.

  6. 6.

    J. K. Knowles & E. Sternberg, On the failure of ellipticity of the equations of nonlinear elastostatics for a special material, Journal of Elasticity 5 (1975) 341–361.

  7. 7.

    C. Truesdell & W. Noll, The non-linear field theories of mechanics, Handbuch der Physik Vol. III/3, Springer, Berlin 1965.

  8. 8.

    P. R. Halmos, Finite-dimensional vector spaces, Springer-Verlag, Berlin 1974.

  9. 9.

    B. Bernstein & R. A. Toupin, Some properties of the Hessian matrix of a strictly convex function, Journal für die reine und angewandte Mathematik 210 (1961) 65–72.

  10. 10.

    J. Hadamard, Leçons sur la propagation des ondes et les équations de l'hydrodynamique, Hermann, Paris 1903.

  11. 11.

    F. John, Plane elastic waves of finite amplitude, Hadamard materials and harmonic materials, Communications on Pure and Applied Mathematics 19 (1966) 309–341.

  12. 12.

    M. E. Gurtin, Two-phase deformations of elastic solids, Archive for Rational Mechanics and Analysis 84 (1983) 1–29.

  13. 13.

    R. D. James, Finite deformation by mechanical twinning, Archive for Rational Mechanics and Analysis 77 (1981) 143–176.

  14. 14.

    J. M. Ball & R. D. James, Fine phase mixtures as minimizers of energy, Archive for Rational Mechanics and Analysis 100 (1987) 13–52.

  15. 15.

    J. K. Knowles & E. Sternberg, On the failure of ellipticity and the emergence of discontinuous deformation gradients in plane finite elastostatics. Journal of Elasticity 8 (1978) 329–379.

  16. 16.

    J. L. Ericksen, Continuous martensitic transformations in thermoelastic crystals, Journal of Thermal Stresses 4 (1981) 107–119.

  17. 17.

    S. A. Silling, Consequences of the Maxwell relation for anti-plane shear deformations of an elastic solid, Journal of Elasticity 19 (1988) 241–284.

Download references

Author information

Additional information

Communicated by the Editor

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rosakis, P. Ellipticity and deformations with discontinuous gradients in finite elastostatics. Arch. Rational Mech. Anal. 109, 1–37 (1990). https://doi.org/10.1007/BF00377977

Download citation

Keywords

  • Neural Network
  • Complex System
  • Nonlinear Dynamics
  • Electromagnetism
  • Discontinuous Gradient